OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 5 — May. 1, 2013
  • pp: 411–420

MIMO Architecture for Coherent Optical Wireless Communication: System Design and Performance

Mingbo Niu, Julian Cheng, and Jonathan F. Holzman  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 5, pp. 411-420 (2013)
http://dx.doi.org/10.1364/JOCN.5.000411


View Full Text Article

Enhanced HTML    Acrobat PDF (519 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A coherent multiple-input multiple-output architecture is proposed for optical wireless communications (OWCs) to mitigate atmospheric turbulence effects. Transmitter optical signals operate at distinct carrier frequencies to allow the received optical signals to be separately processed. The accumulated phase noise in each transmission branch can then be independently and electrically compensated. Based on the proposed architecture, several diversity combining techniques are used at the receiver end for system performance evaluation. Three different turbulence models are considered in this paper for different scintillation level ranges, including gamma–gamma turbulence, K-distributed turbulence, and negative exponential turbulence. Closed-form error rate expressions are derived using a series expansion approach. The diversity order in the gamma–gamma turbulence channel is found to depend only on the smaller channel parameter, while the K-distributed and negative exponential turbulence channels are found to have the same diversity order. The presented numerical results demonstrate substantial system performance improvement over single-link coherent OWC.

© 2013 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Research Papers

History
Original Manuscript: October 3, 2012
Revised Manuscript: January 24, 2013
Manuscript Accepted: February 14, 2013
Published: April 5, 2013

Citation
Mingbo Niu, Julian Cheng, and Jonathan F. Holzman, "MIMO Architecture for Coherent Optical Wireless Communication: System Design and Performance," J. Opt. Commun. Netw. 5, 411-420 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-5-411


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon., vol.  1, pp. 279–307, Apr. 2009. [CrossRef]
  2. K. Kiasaleh, “Performance of coherent DPSK free-space optical communication systems in K-distributed turbulence,” IEEE Trans. Commun., vol.  54, pp. 604–607, Apr. 2006. [CrossRef]
  3. E. Jakeman and P. N. Pusey, “A model for non-Rayleigh sea echo,” IEEE Trans. Antennas Propag., vol.  AP-24, pp. 806–814, Nov. 1976. [CrossRef]
  4. A. Belmonte and J. M. Kahn, “Performance of synchronous optical receivers using atmospheric compensation techniques,” Opt. Express, vol.  16, pp. 14151–14162, Sept. 2008. [CrossRef]
  5. T. A. Tsiftsis, “Performance of heterodyne wireless optical communication systems over gamma–gamma atmospheric turbulence channels,” Electron. Lett., vol.  44, pp. 373–375, Feb. 2008. [CrossRef]
  6. A. Belmonte and J. M. Kahn, “Capacity of coherent free-space optical links using diversity combining techniques,” Opt. Express, vol.  17, pp. 12601–12611, July 2009. [CrossRef]
  7. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol., vol.  24, pp. 4750–4762, Dec. 2006. [CrossRef]
  8. R. Lange, B. Smutny, B. Wandernoth, R. Czichy, and D. Giggenbach, “142 km, 5.625 Gbps free-space optical link based on homodyne BPSK modulation,” Proc. SPIE, vol.  6105, pp. 61050A, Mar. 2006. [CrossRef]
  9. N. Cvijetic, D. Qian, J. Yu, Y.-K. Huang, and T. Wang, “Polarization-multiplexed optial wireless transmission with coherent detection,” J. Lightwave Technol., vol.  28, pp. 1218–1227, Apr. 2010. [CrossRef]
  10. H. Willebrand and B. S. Ghuman, Free Space Optics: Enabling Optical Connectivity in Today’s Networks. Sams Publishing, Indianapolis, IN, 2002.
  11. X. Zhu, J. M. Kahn, and J. Wang, “Mitigation of turbulence-induced scintillation noise in free-space optical links using temporal-domain detection techniques,” Photon. Technol. Lett., vol.  15, pp. 623–625, Apr. 2003. [CrossRef]
  12. S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke, “Free-space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun., vol.  53, pp. 1402–1412, Aug. 2005. [CrossRef]
  13. Z. Ghassemlooy, W. O. Popoola, V. Ahmadi, and E. Leitgeb, “MIMO free-space optical communication employing subcarrier intensity modulation in atmospheric turbulence channels,” in Communications Infrastructure. Systems and Applications in Europe (Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering). Springer, Berlin, Heidelberg, 2009, vol. 16, part 2, pp. 61–73.
  14. E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma–gamma fading,” IEEE Trans. Commun., vol.  57, pp. 3415–3424, Nov. 2009. [CrossRef]
  15. J. Park, E. Lee, and G. Yoon, “Average bit-error rate of the Alamouti scheme in gamma–gamma fading channels,” IEEE Photon. Technol. Lett., vol.  23, pp. 269–271, Feb. 2011. [CrossRef]
  16. E. J. Lee, and V. W. S. Chan, “Part 1: Optical communication over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun., vol.  22, pp. 1896–1906, Nov. 2004. [CrossRef]
  17. S. M. Haas, J. H. Shapiro, and V. Tarokh, “Space-time codes for wireless optical communications,” EURASIP J. Appl. Signal Process., vol.  2002, pp. 211–220, Jan. 2002. [CrossRef]
  18. E. Bayaki and R. Schober, “Performance and design of coherent and differential space-time coded FSO systems,” J. Lightwave Technol., vol.  30, pp. 1569–1577, June 2012. [CrossRef]
  19. N. Cvijetic and T. Wang, “A MIMO architecture for IEEE 802.16d (WiMAX) heterogeneous wireless access using optical wireless technology,” Lect. Notes Comput. Sci., vol.  4003, pp. 441–451, 2006. [CrossRef]
  20. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media. SPIE, Bellingham, WA, 1998.
  21. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng., vol.  40, pp. 1554–1562, Aug. 2001. [CrossRef]
  22. M. Niu, J. Cheng, and J. F. Holzman, “Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels,” Opt. Express, vol.  18, pp. 13915–13926, June 2010. [CrossRef]
  23. V. Minier, A. Kevorkian, and J. M. Xu, “Superimposed phase gratings in planar optical waveguides for wavelength demultiplexing applications,” IEEE Photon. Technol. Lett., vol.  5, pp. 330–333, Mar. 1993. [CrossRef]
  24. R. Shechter, Y. Amitai, and A. A. Friesem, “Compact wavelength division multiplexers and demultiplexers,” Appl. Opt., vol.  41, pp. 1256–1261, Mar. 2002. [CrossRef]
  25. M. Jafar, D. C. O’Brien, C. J. Stevens, and D. J. Edwards, “Evaluation of coverage area for a wide line-of-sight indoor optical free-space communication system employing coherent detection,” IET Commun., vol.  2, pp. 18–26, Jan. 2008. [CrossRef]
  26. S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Netw., vol.  2, pp. 178–200, June 2003.
  27. D. Banerjee, PLL Performance, Simulation, and Design Handbook, 4th ed.National Semiconductor, 2006.
  28. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed., Academic, San Diego, 2000.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited