OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 5 — May. 1, 2013
  • pp: 457–464

All-Optical 2R Regeneration With Contrast Enhancement in a Reflective Vertical Cavity Quantum-Wells Saturable Absorber

Rajib Pradhan, Lokanath Mishra, Kamal Hussain, Satyajit Saha, and Prasanta Kumar Datta  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 5, Issue 5, pp. 457-464 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (536 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Round-trip nonlinear phase-shift of an input signal due to optically induced thermal effects and saturable index change in a low intensity resonant reflective vertical cavity semiconductor (quantum wells) saturable absorber (VCSSA) is investigated theoretically for 2R (re-amplification and re-shaping) regeneration. Calculations are carried out for a high contrast switching system to find the optimum value of parameters such as energy time filling factor (FF) of the input pump signal, top mirror reflectivity (Rt) of the Fabry–Pérot cavity and wavelength detuning from the low intensity resonant wavelength of the Fabry–Pérot cavity. It is observed that the optimum contrasts are almost the same for a wavelength tuning range as large as 8 nm around the low intensity resonance wavelength of the InGaAs/InP quantum-wells-based VCSSA with Rt of 0.72 and FF of 0.10. The simulation shows that the required average input power is minimal for high contrast 2R regeneration when operated in the short wavelength side.

© 2013 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.1450) Nonlinear optics : Bistability
(190.3270) Nonlinear optics : Kerr effect
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.1150) Optical devices : All-optical devices

ToC Category:
Research Papers

Original Manuscript: June 8, 2012
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 26, 2013
Published: April 18, 2013

Rajib Pradhan, Lokanath Mishra, Kamal Hussain, Satyajit Saha, and Prasanta Kumar Datta, "All-Optical 2R Regeneration With Contrast Enhancement in a Reflective Vertical Cavity Quantum-Wells Saturable Absorber," J. Opt. Commun. Netw. 5, 457-464 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Otsuka and S. Kobayashi, “Optical bistability and nonlinear resonance in a resonant-type semiconductor laser amplifier,” Electron. Lett., vol.  19, pp. 262–263, 1983. [CrossRef]
  2. M. J. Adams, H. J. Wetlake, H. J. Wetlake, M. J. O’Mahony, and I. D. Henning, “A comparison of active and passive optical bistability in semiconductors,” IEEE J. Quantum Electron., vol.  21, no. 9, pp. 1498–1504, 1985. [CrossRef]
  3. P. Pakdeevanich and M. J. Adams, “Measurements and modelling of reflective bistability in 1.55 μm laser diode amplifiers,” IEEE J. Quantum Electron., vol.  35, pp. 1894–1903, 1999. [CrossRef]
  4. H. Kawaguchi, K. Inoue, T. Matsuoka, and K. Otsuka, “Bistable output characteristics in semiconductor laser injection locking,” IEEE J. Quantum Electron., vol.  21, no. 9, pp. 1314–1317, 1985. [CrossRef]
  5. M. J. Adams and R. Wyatt, “Optical bistability in distributed-feedback semiconductor laser amplifiers,” Proc. Inst. Electr. Eng., vol.  134, pp. 35–40, 1987.
  6. D. N. Maywar and G. P. Agrawal, “Transfer-matrix analysis of optical bistability in DFB semiconductor laser amplifiers with nonuniform gratings,” IEEE J. Quantum Electron., vol.  33, pp. 2029–2037, 1997. [CrossRef]
  7. C. Porzi, A. Isomaki, M. Guina, and O. G. Okhotnikov, “Impedance-detuned high-contrast vertical cavity semiconductor switch,” in Optical Fiber Communication Conf. Expo. and the Nat. Fiber Optic Engineers Conf., Anaheim, California, 2005, paper OThM.
  8. C. Porzi, M. Guina, L. Orsila, A. Bogoni, and L. Poti, “Simultaneous dual-wavelength conversion with multiresonant saturable absorption vertical-cavity semiconductor gate,” IEEE Photon. Technol. Lett., vol.  20, pp. 499–501, 2008. [CrossRef]
  9. Y. Tang, A. Siahmakoun, G. Sergio, M. Guina, and M. Pessa, “Optical switching in a resonant Fabry–Pérot saturable absorber,” J. Opt. A, Pure Appl. Opt., vol.  8, pp. 991–995, 2006.
  10. M. Guina, A. Vainionpää, A. Harkonen, L. Orsila, J. Lyytikäinen, and O. G. Okhotnikov, “Vertical-cavity saturable-absorber intensity modulator,” Opt. Lett., vol.  28, pp. 43–45, 2003. [CrossRef]
  11. G. de Valicourt, C. Porzi, M. Guina, and N. Balkan, “Dilute nitride vertical-cavity gate for all-optical logic at 1.3 mm,” IET Optoelectron., vol.  4, pp. 201–209, 2010. [CrossRef]
  12. C. Porzi, M. Guina, A. Bogoni, and L. Poti, “All-optical NAND/NOR logic gates based on semiconductor saturable absorber etalons,” IEEE J. Sel. Top. Quantum Electron., vol.  14, pp. 927–937, 2008.
  13. E. Garmire, “Criteria for optical bistability in a lossy saturating Fabry–Pérot,” IEEE J. Quantum Electron., vol.  25, pp. 289–295, 1989. [CrossRef]
  14. R. Pradhan, S. Saha, and P. K. Datta, “Dispersive bi-stability in a vertical microcavity-based saturable absorber due to photo-thermal effect and initial phase-detuning,” Opt. Commun., vol.  287, pp. 203–209, 2013. [CrossRef]
  15. D. Massoubre, J. L. Oudar, A. O’Hare, M. Gay, L. Bramerie, J. C. Soimn, A. Shen, and J. J. Decobert, “Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates,” J. Lightwave Technol., vol.  24, pp. 3400–3408, 2006. [CrossRef]
  16. D. Rouvillain, P. Brindel, F. Segnineau, L. Pierre, O. Leclerc, H. Choumane, G. Aubin, and J. L. Oudar, “Optical 2R regenerator based on passive saturable absorber for 40  Gbit/s WDM long-haul transmissions,” Electron. Lett., vol.  38, pp. 1113–1114, 2002. [CrossRef]
  17. S. Waiyapot, S. K. Turitsyn, M. P. Fedoruk, A. Rousset, and O. Leclerc, “Optical 2R regeneration at 40  Gbit/s using saturable absorber in long-haul dispersion-managed fiber links,” Opt. Commun., vol.  232, pp. 145–149, 2004.
  18. P. K. Datta, R. Pradhan, L. Mishra, and S. Saha, “Effect of saturable index change on all-optical logic operations in passive vertical cavity semiconductor saturable absorber,” IET Optoelectron., vol.  5, pp. 77–82, 2011. [CrossRef]
  19. R. Pradhan, K. Hussain, and P. K. Datta, “Reflective vertical cavity semiconductor saturable absorber for functional operations with thermal limitations and saturable index change,” Opt. Commun., vol.  284, pp. 3416–3421, 2011. [CrossRef]
  20. E. Garmire, “Resonant optical nonlinearities in semiconductors,” IEEE J. Quantum Electron., vol.  6, pp. 1094–1110, 2000. [CrossRef]
  21. E. Le Cren, S. Lobo, S. Fève, and J. C. Simon, “Observation of thermal effects due to an optical incident signal and high fluence on InGaAs/InP multiple quantum-well saturable absorber nonlinear mirrors: evolution of characteristics and time constants,” Appl. Opt., vol.  45, pp. 6831–6838, 2006.
  22. C. Cacciatore, D. Campi, C. Coriasso, G. Meneghini, and C. Rigo, “Low-power, refractive nonlinearity in InGaAs/InP multi-quantum well waveguide,” Electron. Lett., vol.  28, pp. 1624–1625, 1992.
  23. A. M. Fox, A. C. Maciel, M. G. Shorthose, J. F. Ryan, M. D. Scott, J. I. Davies, and J. R. Riffat, “Nonlinear excitonic optical absorption in GaLnAs/InP,” Appl. Phys. Lett., vol.  51, pp. 30–32, 1987. [CrossRef]
  24. J. S. Weiner, D. B. Pearson, D. A. B. Miller, and D. S. Chemler, “Nonlinear spectroscopy of InGaAs/InAlAs multiple quantum well structures,” Appl. Phys. Lett., vol.  49, pp. 531–533, 1986. [CrossRef]
  25. R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55 μm photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett., vol.  65, pp. 1790–1792, 1994. [CrossRef]
  26. C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes,” Appl. Phys. Lett., vol.  85, pp. 4965–4967, 2004. [CrossRef]
  27. Y. Chen, S. S. Prabhu, S. E. Ralf, and D. T. McInturff, “Trapping and recombination dynamics of low-temperature-grown InGaAs/InAlAs multiple quantum-wells,” Appl. Phys. Lett., vol.  72, pp. 439–441, 1998. [CrossRef]
  28. E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett., vol.  72, pp. 759–761, 1998. [CrossRef]
  29. M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett., vol.  54, pp. 2424–2426, 1989. [CrossRef]
  30. M. Lambsdorff, J. Kulh, J. Rosenzweig, A. Axmann, and J. Schneider, “Sub-picosecond lifetimes in radiation damaged GaAs,” Appl. Phys. Lett., vol.  58, pp. 1881–1883, 1991. [CrossRef]
  31. Y. Jiang, M. C. Teich, and W. I. Wang, “Enhanced exciton absorption and saturation limit in strained InGaAs/InP quantum wells,” J. Appl. Phys., vol.  71, pp. 769–772, 1992. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited