OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 5 — May. 1, 2013
  • pp: 465–474

Intensity-Modulation Full-Field Detection Optical Fast OFDM

Jian Zhao  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 5, pp. 465-474 (2013)
http://dx.doi.org/10.1364/JOCN.5.000465


View Full Text Article

Enhanced HTML    Acrobat PDF (1021 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and investigate intensity-modulation (IM) full-field detection (FD) optical fast orthogonal frequency division multiplexing (F-OFDM). A 16.8Gbit/s binary phase-shift keying (BPSK) FD F-OFDM system over 480 km fiber transmission is experimentally demonstrated to validate the feasibility. BPSK and four amplitude phase-shift keying (4ASK) FD optical F-OFDM with optimized system parameters are numerically investigated and compared with IM direct-detection (DD) F-OFDM and IM FD conventional OFDM at the same spectral efficiency. It is shown that the proposed scheme, while avoiding the use of a coherent receiver, exhibits greatly improved dispersion tolerance over DD optical F-OFDM. It is robust to the phase noise induced in the full-field reconstruction. As a result, significant performance advantages over FD conventional OFDM is obtained.

© 2013 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Research Papers

History
Original Manuscript: December 18, 2012
Revised Manuscript: February 13, 2013
Manuscript Accepted: March 26, 2013
Published: April 18, 2013

Citation
Jian Zhao, "Intensity-Modulation Full-Field Detection Optical Fast OFDM," J. Opt. Commun. Netw. 5, 465-474 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-5-465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Zhao and A. D. Ellis, “A novel optical fast OFDM with reduced channel spacing equal to half of the symbol rate per carrier,” in Optical Fiber Communication Conf., 2010, paper OMR1.
  2. S. K. Ibrahim, J. Zhao, D. Rafique, J. O’Dowd, and A. D. Ellis, “Demonstration of world-first experimental optical fast OFDM system at 7.174  Gbit/s and 14.348  Gbit/s,” in European Conf. Optical Communication, 2010, paper PDP3.4.
  3. N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. M. Heidt, I. P. Giles, D. J. Giles, B. Palsdottir, L. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. D. Ellis, D. J. Richardson, and F. C. G. Gunning, “Wavelength division multiplexing at 2 μm,” in European Conf. Optical Communication, 2012, post-deadline paper Th.3.A.3.
  4. J. Zhao and A. D. Ellis, “Advantage of optical fast OFDM over OFDM in residual frequency offset compensation,” IEEE Photon. Technol. Lett., vol.  24, pp. 2284–2287, 2012. [CrossRef]
  5. J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photon. Technol. Lett., vol.  23, pp. 594–596, 2011. [CrossRef]
  6. J. Zhao and A. D. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photon. Technol. Lett., vol.  24, pp. 34–36, 2012. [CrossRef]
  7. J. Zhao and H. Shams, “Fast dispersion estimation in coherent optical 16QAM fast OFDM systems,” Opt. Express, vol.  21, pp. 2500–2505, 2013. [CrossRef]
  8. C. Lei, H. Chen, M. Chen, and S. Xie, “A high spectral efficiency optical OFDM scheme based on interleaved multiplexing,” Opt. Express, vol.  18, pp. 26149–26154, 2010. [CrossRef]
  9. C. Lei, H. Chen, M. Chen, and S. Xie, “16×10  Gb/s symmetric WDM-FOFDM-PON realization with colorless ONUs,” Opt. Express, vol.  19, pp. 15275–15280, 2011. [CrossRef]
  10. E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental demonstration of cost-effective intensity-modulation and direct-detection optical fast-OFDM over 40 km SMF transmission,” in Proc. Optical Fiber Communication Conf. and Expo., 2012, paper JW2A.65.
  11. E. Giacoumidis, I. Tomkos, and J. M. Tang, “Performance of optical fast-OFDM in MMF-based links,” in Optical Fiber Communication Conf., San Diego, CA, 2011, paper OWU3.
  12. E. Giacoumidis, S. K. Ibrahim, J. Zhao, J. M. Tang, A. D. Ellis, and I. Tomkos, “Experimental and theoretical investigations of intensity-modulation and direct-detection optical fast-OFDM over MMF-links,” IEEE Photon. Technol. Lett., vol.  24, pp. 52–54, 2012.
  13. E. Giacoumidis, A. Tsokanos, C. Mouchos, G. Zardas, C. Alves, J. L. Wei, J. M. Tang, C. Gosset, Y. Jaouen, and I. Tomkos, “Extensive comparison of optical fast OFDM and conventional OFDM for local and access networks,” J. Opt. Commun. Netw., vol.  4, pp. 724–733, 2012. [CrossRef]
  14. W. Long, J. Zhang, D. Wang, J. Han, S. Chen, A. M. Han, G. Gao, H. Leng, L. Liu, W. Zhu, Y. Zhao, and W. Gu, “Mitigation of the interference between odd and even terms in optical fast OFDM scheme based on interleaved multiplexing,” IEEE Photon. Technol. Lett., vol.  24, pp. 1160–1162, 2012. [CrossRef]
  15. M. R. D. Rodrigues and I. Darwazeh, “Fast OFDM: a proposal for doubling the data rate of OFDM schemes,” in Int. Conf. Telecommunications, 2002, pp. 484–487.
  16. F. Xiong, “M-ary amplitude shift keying OFDM system,” IEEE Trans. Commun., vol.  51, pp. 1638–1642, 2003. [CrossRef]
  17. G. Mandyam, “On the discrete cosine transform and OFDM systems,” in Int. Conf. Acoustics, Speech, and Signal Processing, 2003, pp. 544–547.
  18. Y. Yeh and S. Chen, “Efficient channel estimation based on discrete cosine transform,” in Int. Conf. Acoustics, Speech, and Signal Processing, 2003, pp. 676–679.
  19. P. Tan and N. C. Beaulieu, “A comparison of DCT-based OFDM and DFT-based OFDM in frequency offset and fading channels,” IEEE Trans. Commun., vol.  54, pp. 2113–2125, 2006. [CrossRef]
  20. N. Al-Dhahir, H. Minn, and S. Satish, “Optimum DCT-based multicarrier transceivers for frequency-selective channels,” IEEE Trans. Commun., vol.  54, pp. 911–921, 2006. [CrossRef]
  21. F. Gao, T. Cui, A. Nallanathan, and C. Tellambura, “Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non-circular transmissions: algorithms, analysis, and comparisons,” IEEE Trans. Commun., vol.  56, pp. 1425–1429, 2008. [CrossRef]
  22. R. G. Clegg, S. Isam, I. Kanaras, and I. Darwazeh, “A practical system for improved efficiency in frequency division multiplexed wireless networks,” IET Commun., vol.  6, pp. 449–457, 2012. [CrossRef]
  23. P. N. Whatmough, M. R. Perrett, S. Isam, and I. Darwazeh, “VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter,” IEEE Trans. Circuits Syst., vol.  59, pp. 1107–1118, 2012. [CrossRef]
  24. J. L. Wei, X. Q. Jin, and J. M. Tang, “Influence of directly modulated DFB lasers on the transmission performance of carrier-suppressed single-sideband optical OFDM signals over IMDD SMF systems,” J. Lightwave Technol., vol.  27, pp. 2412–2419, 2009. [CrossRef]
  25. J. Xiao, J. Yu, X. Li, Q. Tang, H. Chen, F. Li, Z. Cao, and L. Chen, “Hadamard transform combined with companding transform techniques for PAPR reduction in an optical direct-detection OFDM system,” J. Opt. Commun. Netw., vol.  4, pp. 709–714, 2012. [CrossRef]
  26. L. Chen, Y. Qiao, Y. Zhao, and Y. Ji, “Wide range frequency offset estimation method for a DD-OFDM-PON downstream system,” J. Opt. Commun. Netw., vol.  4, pp. 565–570, 2012. [CrossRef]
  27. E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive loading algorithms for IMDD optical OFDM PON systems using directly modulated lasers,” J. Opt. Commun. Netw., vol.  4, pp. 769–778, 2012. [CrossRef]
  28. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol., vol.  26, pp. 196–203, 2008. [CrossRef]
  29. M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett., vol.  20, pp. 670–672, 2008. [CrossRef]
  30. A. D. Ellis and M. E. McCarthy, “Receiver-side electronic dispersion compensation using passive optical field detection for low cost 10  Gbit/s 600 km-reach applications,” in Proc. Optical Fiber Communication Conf., 2006, paper OTuE4.
  31. N. Kikuchi and S. Sasaki, “Highly sensitive optical multilevel transmission of arbitrary quadrature-amplitude modulation signals with direct detection,” J. Lightwave Technol., vol.  28, pp. 123–130, 2010. [CrossRef]
  32. J. Zhao, M. E. McCarthy, and A. D. Ellis, “Electronic dispersion compensation using full optical field reconstruction in 10  Gbit/s OOK based systems,” Opt. Express, vol.  16, pp. 15353–15365, 2008. [CrossRef]
  33. J. Zhao and A. D. Ellis, “Full-field detection based multi-chip MLSE for offset-DQPSK modulation format,” in European Conf. Optical Communication, 2011, paper Tu.5.A.2.
  34. X. Liu, S. Chandrasekhar, and A. Leven, “Digital self-coherent detection,” Opt. Express, vol.  16, pp. 792–803, 2008. [CrossRef]
  35. I. Tselniker, M. Nazarathy, S. B. Ezra, J. Li, and J. Leuthold, “Self-coherent complex field reconstruction with in-phase and quadrature delay detection without a direct-detection branch,” Opt. Express, vol.  20, pp. 15452–15473, 2012. [CrossRef]
  36. J. Li, R. Schmogrow, D. Hillerkuss, P. C. Schindler, M. Nazerathy, C. S. Langhorst, S. B. Ezra, I. Tselniker, C. Koos, W. Freude, and J. Leuthold, “A self-coherent receiver for detection of PolMUX coherent signals,” Opt. Express, vol.  20, pp. 21413–21433, 2012. [CrossRef]
  37. B. Inan, S. Adhikari, O. Karakaya, P. Kainzmaier, M. Mocker, H. V. Kirchbauer, N. Hanik, and S. L. Jansen, “Real-time 93.8  Gb/s polarization-multiplexed OFDM transmitter with 1024-point IFFT,” Opt. Express, vol.  19, pp. B64–B68, 2011. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited