OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 6 — Jun. 1, 2013
  • pp: 593–608

Introducing Node Architecture Flexibility for Elastic Optical Networks

Norberto Amaya, Georgios Zervas, and Dimitra Simeonidou  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 6, pp. 593-608 (2013)
http://dx.doi.org/10.1364/JOCN.5.000593


View Full Text Article

Enhanced HTML    Acrobat PDF (1879 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A large number of factors generate uncertainty on traffic demands and requirements. In order to deal with uncertainty optical nodes and networks are equipped with flexibility. In this context, we define several types of flexibility and propose a method, based on entropy maximization, to quantitatively evaluate the flexibility provided by optical node components, subsystems, and architectures. Using this method we demonstrate the equivalence, in terms of switching flexibility, of finer spectrum granularity, and faster reconfiguration rate. We also show that switching flexibility is closely related to bandwidth granularity. The proposed method is used to derive formulae for the switching flexibility of key optical node components and the switching and architectural flexibility of four elastic optical node configurations. The elastic optical nodes presented provide various degrees of flexibility and functionality that are discussed in the paper, from flexible spectrum switching to adaptive architectures that support elastic switching of frequency, time, and spatial resources plus on-demand spectrum defragmentation. We further complement this analysis by experimentally demonstrating flexible time, spectrum, and space switching plus dynamic architecture reconfiguration. The implemented architectures support continuous and subwavelength heterogeneous signals with bitrates ranging from 190Mb/s, for a subwavelength channel, to 555Gb/s for a multicarrier superchannel. Results show good performance and the feasibility of implementing the architecture-on-demand concept.

© 2013 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(060.1155) Fiber optics and optical communications : All-optical networks

ToC Category:
Research Papers

History
Original Manuscript: June 4, 2012
Revised Manuscript: February 7, 2013
Manuscript Accepted: April 18, 2013
Published: May 30, 2013

Citation
Norberto Amaya, Georgios Zervas, and Dimitra Simeonidou, "Introducing Node Architecture Flexibility for Elastic Optical Networks," J. Opt. Commun. Netw. 5, 593-608 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-6-593


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar nature of Ethernet traffic (extended version),” IEEE/ACM Trans. Netw., vol.  2, no. 1, pp. 1–15, Feb. 1994. [CrossRef]
  2. K. Thompson, G. Miller, and R. Wilder, “Wide-area Internet traffic patterns and characteristics,” IEEE Netw., vol.  11, no. 6, pp. 10–23, Nov./Dec. 1997.
  3. A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True, “Deriving traffic demands for operational IP networks: Methodology and experience,” IEEE/ACM Trans. Netw., vol.  9, no. 3, pp. 265–279, June 2001. [CrossRef]
  4. B. Krithikaivasan, Y. Zeng, K. Deka, and D. Medhi, “Arch-based traffic forecasting and dynamic bandwidth provisioning for periodically measured nonstationary traffic,” IEEE/ACM Trans. Netw., vol.  15, no. 3, pp. 683–696, June 2007. [CrossRef]
  5. A. Tucholski, E. Kowalczyk, and A. Majka, “Autonomic provisioning in non-linear network traffic,” in 2010 Proc. 19th Int. Conf. Computer Communications and Networks (ICCCN), Aug. 2010.
  6. N. Amaya, I. Muhammad, G. Zervas, R. Nejabati, D. Simeodinou, Y. Zhou, and A. Lord, “Experimental demonstration of a gridless multi-granular optical network supporting flexible spectrum switching,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 2011.
  7. N. Amaya, M. Irfan, G. Zervas, K. Banias, M. Garrich, I. Henning, D. Simeonidou, Y. R. Zhou, A. Lord, K. Smith, V. J. F. Rancano, S. Liu, P. Petropoulos, and D. J. Richardson, “Gridless optical networking field trial: Flexible spectrum switching, defragmentation and transport of 10  g/40  g/100  g/555  g over 620 km field fiber,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 2011.
  8. B. Kozicki, H. Takara, T. Tanaka, Y. Sone, A. Hirano, K. Yonenage, and M. Jinno, “Distance-adaptive path allocation in elastic optical path networks,” IEICE Trans. Commun., vol.  E94-B, pp. 1823–1830, 2010. [CrossRef]
  9. O. Rival and A. Morea, “Cost-efficiency of mixed 10–40–100  Gb/s networks and elastic optical networks,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 2011.
  10. S. K. Korotky, R.-J. Essiambre, and R. W. Tkach, “Expectations of optical network traffic gain afforded by bit rate adaptive transmission,” Bell Lab. Tech. J., vol.  14, pp. 285–295, Feb. 2010. [CrossRef]
  11. A. Klekamp, O. Rival, A. Morea, R. Dischler, and F. Buchali, “Transparent WDM network with bitrate tunable optical OFDM transponders,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 2010.
  12. A. Morea, A. Chong, and O. Rival, “Impact of transparent network constraints on capacity gain of elastic channel spacing,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 2011.
  13. WaveShaper s-Series Product Brief, Oct. 2011 [Online]. Available: http://www.finisar.com/products/optical-instrumentation .
  14. Q. Qiao and M. Yoo, “Optical burst switching (OBS)—a new paradigm for an optical Internet,” J. High Speed Netw., vol.  8, no. 1, pp. 71–86, 1999. [CrossRef]
  15. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, Nov. 2009. [CrossRef]
  16. G. S. Zervas, J. Triay, N. Amaya, Y. Qin, C. Cervelló-Pastor, and D. Simeonidou, “Time shared optical network (TSON): A novel metro architecture for flexible multi-granular services,” Opt. Express, vol.  19, no. 26, pp. B509–B514, Dec. 2011. [CrossRef]
  17. N. Amaya, G. S. Zervas, B. R. Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5  Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in 2011 37th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 2011.
  18. K. Wen, Y. Yin, D. J. Geisler, S. Chang, and S. J. B. Yoo, “Dynamic on-demand lightpath provisioning using spectral defragmentation in flexible bandwidth networks,” in 2011 37th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 2011.
  19. B. Kozicki, H. Takara, Y. Tsukishima, T. Yoshimatsu, K. Yonenaga, and M. Jinno, “Experimental demonstration of spectrum-sliced elastic optical path network (slice),” Opt. Express, vol.  18, no. 21, pp. 22105–22118, Oct. 2010. [CrossRef]
  20. N. Amaya, G. Zervas, and D. Simeonidou, “Architecture on demand for transparent optical networks,” in 2011 13th Int. Conf. Transparent Optical Networks (ICTON), June 2011.
  21. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, Y. Miyamoto, K. Yonenaga, A. Takada, O. Ishida, and S. Matsuoka, “Demonstration of novel spectrum-efficient elastic optical path network with per-channel variable capacity of 40  Gb/s to over 400  Gb/s,” in 34th European Conf. on Optical Communication (ECOC), Sept. 2008.
  22. D. J. Geisler, N. K. Fontaine, R. P. Scott, L. Paraschis, O. Gerstel, and S. J. B. Yoo, “Flexible bandwidth arbitrary modulation format, coherent optical transmission system scalable to terahertz BW,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 2011.
  23. D. J. Geisler, R. Proietti, Y. Yin, R. P. Scott, X. Cai, N. K. Fontaine, L. Paraschis, O. Gerstel, and S. J. B. Yoo, “The first testbed demonstration of a flexible bandwidth network with a real-time adaptive control plane,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 2011.
  24. P. Ji and Y. Aono, “Colorless and directionless multi-degree reconfigurable optical add/drop multiplexers,” in 19th Annu. Wireless and Optical Communications Conf. (WOCC), May 2010.
  25. A. Devarajan, K. Sandesha, R. Gowrishankar, B. Kishore, G. Prasanna, R. Johnson, and P. Voruganti, “Colorless, directionless, and contentionless multi-degree ROADM architecture for mesh optical networks,” in 2nd Int. Conf. on Communication Systems and Networks (COMSNETS), Jan. 2010.
  26. R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 2010.
  27. S. Okamoto, A. Watanabe, and K.-I. Sato, “Optical path cross-connect node architectures for photonic transport network,” J. Lightwave Technol., vol.  14, no. 6, pp. 1410–1422, June 1996.
  28. M. Mandelbaum and P. H. Brill, “Examples of measurement of flexibility and adaptivity in manufacturing systems,” J. Oper. Res. Soc., vol.  40, pp. 603–609, June 1989.
  29. R. P. Parker and A. Wirth, “Manufacturing flexibility: Measures and relationships,” Eur. J. Oper. Res., vol.  118, no. 3, pp. 429–449, 1999. [CrossRef]
  30. D. Shi and R. L. Daniels, “A survey of manufacturing flexibility: Implications for e-business flexibility,” IBM Syst. J., vol.  42, no. 3, pp. 414–427, 2003.
  31. A. Maruoka and N. Honda, “The range of logical flexibility of tree networks,” IEEE Trans. Comput., vol.  C-24, no. 1, pp. 9–28, Jan. 1975. [CrossRef]
  32. J. Rose and S. Brown, “Flexibility of interconnection structures for field-programmable gate arrays,” J. Solid-State Circuits, vol.  26, no. 3, pp. 277–282, Mar. 1991.
  33. S. Yamashita, H. Sawada, and A. Nagoya, “SPFD: A new method to express functional flexibility,” IEEE Trans. Comput.-Aided Des. Integr. Syst., vol.  19, no. 8, pp. 840–849, Aug. 2000. [CrossRef]
  34. A. Stone, “An ontological approach to quantifying the functional flexibility of embedded systems,” IEEE Syst. J., vol.  5, no. 1, pp. 111–120, Mar. 2011. [CrossRef]
  35. E. Shuiabi, V. Thomson, and N. Bhuiyan, “Entropy as a measure of operational flexibility,” Eur. J. Oper. Res., vol.  165, no. 3, pp. 696–707, 2005.
  36. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 2006.
  37. J. Yao, M.-C. Lee, D. Leuenberger, and M. Wu, “Wavelength- and bandwidth-tunable filters based on MEMS-actuated microdisk resonators,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 2006.
  38. K. Nashimoto, D. Kudzuma, and H. Han, “High-speed switching and filtering using PLZT waveguide devices,” in 15th Optoelectronics and Communications Conf. (OECC), July 2010, pp. 540–542.
  39. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol., vol.  24, no. 12, pp. 4433–4454, Dec. 2006. [CrossRef]
  40. M. Bitting, “New optical switches enable automated testing with true flexibility,” in Proc. AUTOTESTCON, Sept. 2004, pp. 361–366.
  41. M. Garrich, N. Amaya, G. S. Zervas, P. Giaccone, and D. Simeonidou, “Architecture on demand: Synthesis and scalability,” in 16th Conf. Optical Network Design and Modelling (ONDM), Apr. 2012.
  42. M. Dzanko, B. Mikac, N. Amaya, G. S. Zervas, and D. Simeonidou, “Availability analysis of optical cross-connect implemented by architecture on demand,” in 14th Int. Conf. on Transparent Optical Networks (ICTON), July 2012.
  43. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol.  27, pp. 379–423, July/Oct. 1948.
  44. S. W. Golomb, Polyominoes: Puzzles, Patterns, Problems, and Packings. Princeton University, 1994, pp. 3–11.
  45. F. D. Carli, A. Frosini, S. Rinaldi, and L. Vuillon, “Annals of combinatorics on the tiling system recognizability of various classes of convex polyominoes,” Ann. Comb., vol.  13, pp. 169–191, 2009. [CrossRef]
  46. A. Bains and T. Biedl, “Reconstructing HV-convex multi-coloured polyominoes,” Theor. Comput. Sci., vol.  411, pp. 3123–3128, July 2010. [CrossRef]
  47. N. Amaya, G. S. Zervas, M. Irfan, Y. R. Zhou, A. Lord, and D. Simeonidou, “Experimental demonstration of gridless spectrum and time optical switching,” Opt. Express, vol.  19, no. 12, pp. 11182–11188, June 2011. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited