OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 6 — Jun. 1, 2013
  • pp: 609–620

Intra-ONU Bandwidth Allocation Games in Integrated EPON/WiMAX Networks

Hui-Tang Lin and Ying-You Lin  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 5, Issue 6, pp. 609-620 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1514 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Integration of Ethernet passive optical network (EPON) and WiMAX technologies is regarded as a promising solution for next-generation broadband access networks. In implementing such networks, efficient bandwidth allocation schemes are essential to satisfy quality of service (QoS) and fairness requirements of various traffic classes. Existing proposals for solving the bandwidth allocation problem in EPON/WiMAX networks neglect interactions between the self-interested EPON and WiMAX service providers (WSPs). Accordingly, this study proposes a two-stage game-theoretic framework for the intra-ONU bandwidth allocation process where the interactions between the EPON and WSPs are taken into account. In the first stage of the proposed framework, a fair and efficient sharing of the available upstream bandwidth between the EPON and WiMAX networks is determined using two market models (i.e., noncooperative and cooperative). In the second stage, the bandwidth allocation obtained from the first stage is distributed among the different traffic classes within the Ethernet and WiMAX networks in accordance with their QoS requirements by means of a Nash bargaining game. Simulation results show that the proposed game-theoretic framework efficiently allocates bandwidth under different market models while simultaneously ensuring proportional fairness among the various traffic classes for the corresponding networks.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4250) Fiber optics and optical communications : Networks

ToC Category:
Research Papers

Original Manuscript: November 26, 2012
Revised Manuscript: March 4, 2013
Manuscript Accepted: March 29, 2013
Published: May 30, 2013

Hui-Tang Lin and Ying-You Lin, "Intra-ONU Bandwidth Allocation Games in Integrated EPON/WiMAX Networks," J. Opt. Commun. Netw. 5, 609-620 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): Building a next-generation optical access network,” IEEE Commun. Mag., vol.  40, no. 2, pp. 66–73, Feb. 2002. [CrossRef]
  2. IEEE 802.3ah, Ethernet in the First Mile Task Force. [Online] Available: http://www.ieee802.org/3/efm/ .
  3. C. Ranaweera, E. Wong, C. Lim, and A. Nirmalathas, “Next generation optical-wireless converged network architectures,” IEEE Network, vol.  26, no. 2, pp. 22–27, Mar./Apr. 2012.
  4. N. Ghazisaidi and M. Maier, “Techno-economic analysis of EPON and WiMAX for future fiber-wireless (FiWi) networks,” Comput. Netw., vol.  54, no. 15, pp. 2640–2650, Oct. 2010. [CrossRef]
  5. J. Li and G. Shen, “Cost minimization planning for greenfield passive optical networks,” J. Opt. Commun. Netw., vol.  1, no. 1, pp. 17–29, June 2009. [CrossRef]
  6. N. Ghazisaidi, M. Maier, and C. M. Assi, “Fiber-wireless (FiWi) access networks: A survey,” IEEE Commun. Mag., vol.  47, no. 2, pp. 160–167, Feb. 2009. [CrossRef]
  7. G. Shen, R. S. Tucker, and C.-J. Chae, “Fixed mobile convergence architectures for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, Aug. 2007. [CrossRef]
  8. A. Shami, X. Bai, C. M. Assi, and N. Ghani, “Jitter performance in Ethernet passive optical networks,” J. Lightwave Technol., vol.  23, no. 4, pp. 1745–1753, Apr. 2005. [CrossRef]
  9. T. Berisa, Z. Ilic, and A. Bazant, “Absolute delay variation guarantees in passive optical networks,” J. Lightwave Technol., vol.  29, no. 9, pp. 1383–1393, May 2011. [CrossRef]
  10. T. Das, A. Gumaste, A. Lodha, A. Mathew, and N. Ghani, “Generalized framework and analysis for bandwidth scheduling in GPONs and NGPONs—the K-out-of-N approach,” J. Lightwave Technol., vol.  29, no. 19, pp. 2875–2892, Oct. 2011. [CrossRef]
  11. A. Fiat, “Why study the price of anarchy?: Technical perspective,” Commun. ACM, vol.  55, no. 7, p. 115, July 2012. [CrossRef]
  12. Z. Han, D. Niyato, W. Saad, T. Basar, and A. Hjorungnes, Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. Cambridge University, 2011.
  13. G. Schütz and N. Correia, “Design of QoS-aware energy-efficient fiber–wireless access networks,” J. Opt. Commun. Netw., vol.  4, no. 8, pp. 586–594, Aug. 2012. [CrossRef]
  14. B. Lin, J. Tapolcai, and P.-H. Ho, “Dimensioning and site planning of integrated PON and wireless cooperative networks for fixed mobile convergence,” IEEE Trans. Veh. Technol., vol.  60, no. 9, pp. 4528–4538, Nov. 2011. [CrossRef]
  15. N. Ghazisaidi, M. Scheutzow, and M. Maier, “Survivability analysis of next-generation passive optical networks and fiber-wireless access networks,” IEEE Trans. Reliab., vol.  60, no. 2, pp. 479–492, June 2011. [CrossRef]
  16. Y. Liu, L. Guo, and X. Wei, “Optimizing backup optical-network-units selection and backup fibers deployment in survivable hybrid wireless-optical broadband access networks,” J. Lightwave Technol., vol.  30, no. 10, pp. 1509–1523, May 2012. [CrossRef]
  17. K. Yang, S. Ou, G. Ken, and H.-H. Chen, “Convergence of Ethernet PON and IEEE 802.16 broadband access networks and its QoS-aware dynamic bandwidth allocation scheme,” IEEE J. Sel. Areas Commun., vol.  27, no. 2, pp. 101–116, Feb. 2009. [CrossRef]
  18. A. R. Dhaini, P.-H. Ho, and X. Jiang, “WiMAX-VPON: A framework of layer-2 VPNs for next-generation access networks,” J. Opt. Commun. Netw., vol.  2, no. 7, pp. 400–414, July 2010. [CrossRef]
  19. A. R. Dhaini, P. H. Ho, and X. H. Jiang, “QoS control for guaranteed service bundles over fiber-wireless (FiWi) broadband access networks,” J. Lightwave Technol., vol.  29, no. 10, pp. 1500–1513, May 2011. [CrossRef]
  20. B. O. Obele, M. Iftikhar, S. Manipornsut, and M. Kang, “Analysis of the behavior of self-similar traffic in a QoS-aware architecture for integrating WiMAX and GEPON,” J. Opt. Commun. Netw., vol.  1, no. 4, pp. 259–273, Sept. 2009. [CrossRef]
  21. H. Yaïche, R. R. Mazumdar, and C. Rosenber, “A game theoretic framework for bandwidth allocation and pricing in broadband networks,” IEEE/ACM Trans. Netw., vol.  8, no. 5, pp. 667–678, Oct. 2000. [CrossRef]
  22. E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez, and L. Wynter, “A survey on networking games in telecommunications,” Comput. Oper. Res., vol.  33, no. 2, pp. 286–311, Feb. 2006. [CrossRef]
  23. Z. Ji and K. J. R. Liu, “Dynamic spectrum sharing: A game theoretical overview,” IEEE Commun. Mag., vol.  45, no. 5, pp. 88–94, 2007. [CrossRef]
  24. X.-R. Cao, H.-X. Shen, R. Milito, and P. Wirth, “Internet pricing with a game theoretical approach: Concepts and examples,” IEEE/ACM Trans. Netw., vol.  10, no. 2, pp. 208–216, Apr. 2002. [CrossRef]
  25. D. Niyato and E. Hossain, “Wireless broadband access WiMAX and beyond—integration of WiMAX and WiFi: Optimal pricing for bandwidth sharing,” IEEE Commun. Mag., vol.  45, no. 5, pp. 140–146, May 2007. [CrossRef]
  26. S.-L. Hew and L. B. White, “Cooperative resource allocation games in shared networks: Symmetric and asymmetric fair bargaining models,” IEEE Trans. Wireless Commun., vol.  7, no. 11, pp. 4166–4175, Nov. 2008. [CrossRef]
  27. Z. Han and H. V. Poor, “Coalition games with cooperative transmission: A cure for the curse of boundary nodes in selfish packet-forwarding wireless networks,” IEEE Trans. Commun., vol.  57, no. 1, pp. 203–213, Jan.2009. [CrossRef]
  28. H.-T. Lin, Y.-Y. Lin, W.-R. Chang, and S.-M. Chen, “A game-theoretic framework for intra-ONU scheduling in integrated EPON/WiMAX networks,” in Proc. IEEE GLOBECOM, 2009.
  29. G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol.  40, no. 2, pp. 74–80, Feb. 2002. [CrossRef]
  30. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” Internet Engineering Task Force RFC 2475, Dec. 1998.
  31. IEEE Standard 802.16 Working Group, “IEEE 802.16e-2005 Standard for Local, and Metropolitan Area Networks: Air interface for fixed broadband wireless access systems-amendment for physical, and medium access control layers for combined fixed, and mobile operation in licensed bands,” Dec. 2005.
  32. B. O’Neill, “A problem of rights arbitration from the Talmud,” Math. Social Sci., vol.  2, pp. 345–371, 1982. [CrossRef]
  33. H.-J. Byun, J.-M. Nho, and J.-T. Lim, “Dynamic bandwidth allocation algorithm in Ethernet passive optical networks,” Electron. Lett., vol.  39, no. 13, pp. 1001–1002, June 2003. [CrossRef]
  34. S. De, V. Singh, H. M. Gupta, N. Saxena, and A. Roy, “A new predictive dynamic priority scheduling in Ethernet passive optical networks (EPONs),” Opt. Switch. Netw., vol.  7, no. 4, pp. 215–223Dec. 2010. [CrossRef]
  35. P. Marbach and R. Berry, “Downlink resource allocation and pricing for wireless networks,” in Proc. IEEE INFOCOM, 2002, pp. 1470–1479.
  36. Y. Chen and K. J. Ray Liu, “Understanding microeconomic behaviors in social networking,” IEEE Signal Process. Mag., vol.  29, no. 2, pp. 53–64, Mar. 2012.
  37. L. He and J. Walrand, “Pricing and revenue sharing strategies for Internet service providers,” IEEE J. Sel. Areas Commun., vol.  24, no. 5, pp. 942–951, May 2006. [CrossRef]
  38. D. Niyato and E. Hossain, “Competitive pricing for spectrum sharing in cognitive radio networks: Dynamic game, inefficiency of Nash equilibrium, and collusion,” IEEE J. Sel. Areas Commun., vol.  26, no. 1, pp. 192–202, Jan. 2008. [CrossRef]
  39. D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA: MIT, 1991.
  40. M. Pulido, J. S. Soriano, and N. Llorca, “Game theory techniques for university management: An extended bankruptcy model,” Oper. Res., vol.  109, pp. 129–142, 2002.
  41. R. B. Myerson, Game Theory: Analysis of Conflict. Cambridge, MA: Harvard University, 1991.
  42. S. P. Ketchpel, “Coalition formation among autonomous agents,” in Proc. of MAAMAW, 1993.
  43. J. Nash, “The bargaining problem,” Econometrica, vol.  18, no. 2, pp. 155–162, 1950.
  44. H. Raiffa, “Arbitration schemes for generalized two-person games” in Contributions to the Theory of Game II. Princeton University, 1953, pp. 361–388.
  45. Z. Han, Z. Ji, and K. J. Liu, “Fair multiuser channel allocation for OFDMA networks using Nash bargaining solutions and coalitions,” IEEE Trans. Commun., vol.  53, no. 8, pp. 1366–1376, Aug. 2005. [CrossRef]
  46. M. P. McGarry, M. Reisslein, and M. Maier, “WDM Ethernet passive optical networks,” IEEE Commun. Mag., vol.  44, no. 2, pp. 15–22, Feb. 2006. [CrossRef]
  47. W. Willinger, M. S. Taqqu, and A. Erramilli, “A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks,” in Stochastic Networks. Oxford, UK: Oxford University, 1996, pp. 339–366.
  48. A. R. Dhaini, C. M. Assi, M. Maier, and A. Shami, “Per-stream and admission control in Ethernet passive optical networks (EPONs),” J. Lightwave Technol., vol.  25, no. 7, pp. 1659–1669, July 2007. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited