OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 7 — Jul. 1, 2013
  • pp: 667–676

Demonstration of Data and Control Plane for Optical Multicast at 100 and 200 Gb/s With and Without Frequency Conversion

N. Sambo, G. Meloni, G. Berrettini, F. Paolucci, A. Malacarne, A. Bogoni, F. Cugini, L. Potì, and P. Castoldi  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 7, pp. 667-676 (2013)
http://dx.doi.org/10.1364/JOCN.5.000667


View Full Text Article

Enhanced HTML    Acrobat PDF (1525 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Emerging services, such as high-definition Internet Protocol TV (IP-TV) or data center migration, are going to increase the amount of multicast traffic in the Internet. The support of multicast directly in the optical domain, instead of at the IP layer, is a target for reducing the amount of optical–electronic–optical conversions (thus, the network operational and capital expenditure) and energy consumption. In parallel, flex-grid technology (e.g., bandwidth variable wavelength selective switches) is emerging as a candidate solution to be adopted in future optical transport networks given its capacity of improving spectrum efficiency. This paper is focused on optical multicast in flex-grid optical networks and on its control through the Path Computation Element (PCE). First, we present two node architectures supporting optical multicast. The first node architecture achieves optical multicast through passive light split and requires that the multicast connection satisfies the spectrum continuity constraint. The second node architecture achieves optical multicast with frequency conversion. In particular, a specific implementation of the second architecture is proposed in this paper exploiting a periodically poled lithium niobate (PPLN) waveguide. Then, a PCE architecture to control optical multicast (with and without frequency conversion) is proposed. Optical multicasting, based on the proposed node architectures, at 100 and 200Gb/s is experimentally demonstrated in a flex-grid network testbed. In particular, multicasting is demonstrated with 112Gb/s polarization multiplexing 16 quadrature amplitude modulation (PM-16QAM) and polarization multiplexing quadrature phase shift keying (PM-QPSK), and with 224Gb/s PM-16QAM considering the light-split node architecture. Moreover, optical multicast with two frequency conversions, achieved in a single PPLN device, is demonstrated for the first time with a 224Gb/s PM-16QAM signal. The testbed also includes the PCE, which is extended to control optical multicast in flex-grid optical networks.

© 2013 Optical Society of America

OCIS Codes
(060.4253) Fiber optics and optical communications : Networks, circuit-switched
(060.4255) Fiber optics and optical communications : Networks, multicast

ToC Category:
Research Papers

History
Original Manuscript: January 2, 2013
Revised Manuscript: April 10, 2013
Manuscript Accepted: April 24, 2013
Published: June 13, 2013

Citation
N. Sambo, G. Meloni, G. Berrettini, F. Paolucci, A. Malacarne, A. Bogoni, F. Cugini, L. Potì, and P. Castoldi, "Demonstration of Data and Control Plane for Optical Multicast at 100 and 200 Gb/s With and Without Frequency Conversion," J. Opt. Commun. Netw. 5, 667-676 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-7-667


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, Aug. 2010. [CrossRef]
  2. K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Elastic bandwidth allocation in flexible OFDM-based optical networks,” J. Lightwave Technol., vol.  29, no. 9, pp. 1354–1366, May 2011. [CrossRef]
  3. N. Sambo, P. Castoldi, F. Cugini, G. Bottari, and P. Iovanna, “Toward high-rate and flexible optical networks,” IEEE Commun. Mag., vol.  50, no. 5, pp. 66–72, May 2012. [CrossRef]
  4. G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Commun. Surv. Tutorials, vol.  15, no. 1, pp. 65–87, 2013. [CrossRef]
  5. “IP multicasting technical overview,” Cisco, Aug.2007 [Online]. Available: http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6552/prod_white_paper0900aecd804d5fe6.html .
  6. “Supported IP multicast protocols standards,” Juniper Networks, Inc., May2011 [Online]. Available: http://www.juniper.net/techpubs/en_US/junos11.3/topics/reference/standards/multicast-ip.html .
  7. C. Lange, O. Bonneß, and N. Leder, “Operator perspective on broadband network traffic evolution,” in Proc. European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.D.1.
  8. “Internet video viewing to trump broadcast TV by 2020,” TDG Research, May2010 [Online]. Available: http://tdgresearch.com/internet-video-viewing-to-trump-broadcast-tv-by-2020 .
  9. S. Deering, “Host extensions for IP multicasting,” , July 1986.
  10. E. Bonetto, L. Chiaraviglio, D. Cuda, G. Gavilanes Castillo, and F. Neri, “Optical technologies can improve the energy efficiency of networks,” in 35th European Conf. on Optical Communication, Sept. 2009.
  11. L. Sahasrabuddhe and B. Mukherjee, “Light trees: optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag., vol.  37, no. 2, pp. 67–73, Feb. 1999. [CrossRef]
  12. O. Yilmaz, S. Nuccio, S. Khaleghi, J.-Y. Yang, L. Christen, and A. Willner, “Optical multiplexing of two 21.5  Gb/s DPSK signals into a single 43  Gb/s DQPSK channel with simultaneous 7-fold multicasting in a single PPLN waveguide,” in Optical Fiber Communication Conf., Mar. 2009.
  13. Y. Zhu, X. Gao, W. Wu, and J. Jue, “Efficient impairment-constrained 3R regenerator placement for light-trees in optical networks,” J. Opt. Commun. Netw., vol.  3, no. 4, pp. 359–371, Apr. 2011. [CrossRef]
  14. G. Ellinas, N. Antoniades, T. Panayiotou, A. Hadjiantonis, and A. Levine, “Multicast routing algorithms based on Q-factor physical-layer constraints in metro networks,” IEEE Photon. Technol. Lett., vol.  21, no. 6, pp. 365–367, Mar. 2009. [CrossRef]
  15. T. Rahman, G. Ellinas, and M. Ali, “Lightpath- and light-tree-based groupcast routing and wavelength assignment in mesh optical networks,” J. Opt. Commun. Netw., vol.  1, no. 2, pp. A44–A55, July 2009. [CrossRef]
  16. P. Soproni and T. Cinkler, “Physical impairment aware multicast routing heuristics,” in 13th Int. Conf. Transparent Optical Networks, June 2011.
  17. A. Gumaste, N. Ghani, P. Bafna, A. Lodha, A. Agrawal, T. Das, J. Wang, and S. Q. Zheng, “Dynaspot: Dynamic services provisioned optical transport test-bed—achieving multirate multiservice dynamic provisioning using strongly connected light-trail (slit) technology,” J. Lightwave Technol., vol.  26, no. 1, pp. 183–195, Jan. 2008. [CrossRef]
  18. T. Tsuritani, A. Murakami, L. Liu, K. Ogaki, and M. Tsurusawa, “Power managed optical point-to-multipoint (P2MP) tree signalling demonstration in GMPLS-controlled wavelength switched optical networks,” in 36th European Conf. and Exhibition on Optical Communication, Sept. 2010.
  19. G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” IEEE Photon. Technol. Lett., vol.  16, no. 7, pp. 1775–1777, July 2004. [CrossRef]
  20. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “All-optical wavelength multicasting in a QD-SOA,” IEEE J. Quantum Electron., vol.  47, no. 4, pp. 541–547, Apr. 2011. [CrossRef]
  21. O. F. Yilmaz, S. R. Nuccio, X. Wang, J. Wang, I. Fazal, J.-Y. Yang, X. Wu, and A. Willner, “Experimental demonstration of 8-fold multicasting of a 100  Gb/s polarization-multiplexed OOK signal using highly nonlinear fiber,” in Optical Fiber Communication Conf., Mar. 2010, paper OWP8.
  22. R. Casellas, R. Munoz, J. Fàbrega, M. Moreolo, R. Martinez, L. Liu, T. Tsuritani, and I. Morita, “Experimental assessment of a combined PCE-RMA and distributed spectrum allocation mechanism for GMPLS elastic CO-OFDM optical networks,” in Optical Fiber Communication Conf., Mar. 2012, paper OM3G.1.
  23. D. Geisler, R. Proietti, Y. Yin, R. Scott, X. Cai, N. Fontaine, L. Paraschis, O. Gerstel, and S. Yoo, “The first testbed demonstration of a flexible bandwidth network with a real-time adaptive control plane,” in Proc. 37th European Conf. and Expo. on Optical Communications, Sept. 2011, paper TH.13.K.2.
  24. F. Cugini, G. Meloni, F. Paolucci, N. Sambo, M. Secondini, L. Gerardi, L. Poti, and P. Castoldi, “Demonstration of flexible optical network based on path computation element,” J. Lightwave Technol., vol.  30, no. 5, pp. 727–733, Mar. 2012. [CrossRef]
  25. N. Sambo, F. Cugini, G. Bottari, P. Iovanna, and P. Castoldi, “Distributed setup in optical networks with flexible grid,” in Proc. 37th European Conf. and Expo. on Optical Communications, Sept. 2011, paper We.10.P1.100.
  26. R. Munoz, R. Casellas, and R. Martinez, “Dynamic distributed spectrum allocation in GMPLS-controlled elastic optical networks,” in Proc. 37th European Conf. and Expo. on Optical Communications, Sept. 2011, paper Tu.5.K.4.
  27. R. Aggarwal, D. Papadimitriou, and S. Yasukawa, “Resource reservation protocol-traffic engineering (RSVP-TE) for point-to-multipoint TE label switched paths (LSPs),” IETF RFC 4875, May 2007.
  28. D. King, A. Farrel, Y. Li, F. Zhang, and R. Casellas, “Generalized labels for the flexi-grid in lambda-switch-capable (LSC) label switching routers,” IETF Internet Draft, Oct.2012 [Online]. Available: http://tools.ietf.org/html/draft-farrkingel-ccamp-flexigrid-lambda-label-04 .
  29. Q. Zhao, D. King, F. Verhaeghe, T. Takeda, Z. Ali, and J. Meuric, “Extensions to the path computation element communication protocol (PCEP) for point-to-multipoint traffic engineering label switched paths,” , Sept. 2010.
  30. L. Sahasrabuddhe and B. Mukherjee, “Multicast routing algorithms and protocols: a tutorial,” IEEE Netw., vol.  14, no. 1, pp. 90–102, Jan./Feb. 2000. [CrossRef]
  31. F. Cugini, N. Sambo, N. Andriolli, A. Giorgetti, L. Valcarenghi, P. Castoldi, E. Le Rouzic, and J. Poirrier, “Enhancing GMPLS signaling protocol for encompassing quality of transmission (QoT) in all-optical networks,” J. Lightwave Technol., vol.  26, no. 19, pp. 3318–3328, Oct. 2008. [CrossRef]
  32. W. Heddeghem, F. Idzikowski, W. Vereecken, M. Colle, D. Pickavet, and P. Demeester, “Power consumption modeling in optical multilayer networks,” Photon. Netw. Commun., vol.  24, no. 2, pp. 86–102, Oct. 2012. [CrossRef]
  33. F. Paolucci, N. Sambo, F. Cugini, A. Giorgetti, and P. Castoldi, “Experimental demonstration of impairment-aware PCE for multi-bit-rate WSONs,” J. Opt. Commun. Netw., vol.  3, no. 8, pp. 610–619, Aug. 2011. [CrossRef]
  34. N. Sambo, F. Cugini, G. Berrettini, G. Meloni, F. Paolucci, and L. Potì, “Flex-grid optical network supporting multicasting at high transmission rates,” in Proc. European Conf. and Exhibition on Optical Communication, 2012, paper Mo.2.D.5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited