OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 7 — Jul. 1, 2013
  • pp: 686–695

High-Speed 850 nm Quasi-Single-Mode VCSELs for Extended-Reach Optical Interconnects

Rashid Safaisini, Krzysztof Szczerba, Petter Westbergh, Erik Haglund, Benjamin Kögel, Johan S. Gustavsson, Magnus Karlsson, Peter Andrekson, and Anders Larsson  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 7, pp. 686-695 (2013)
http://dx.doi.org/10.1364/JOCN.5.000686


View Full Text Article

Enhanced HTML    Acrobat PDF (1102 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents recent results on high-speed, quasi-single-mode, 850 nm vertical-cavity surface-emitting lasers (VCSELs) with a narrow spectral width for extended-reach optical interconnects. The top mirror reflectivity is adjusted for high output power, slope efficiency, and small signal modulation bandwidth. An oxide confined VCSEL with an 3μm aperture diameter delivers 2 mW of output power and reaches a resonance frequency as high as 25 GHz and a modulation bandwidth exceeding 20 GHz. A small K-factor of 0.17 ns and a large D-factor of 17.3GHz/mA1/2, extracted from the VCSEL modulation response, along with the improved DC and modal properties enable energy-efficient data transmission at high bit rates over long-distance multimode fiber. Error-free transmission at bit rates exceeding 20Gbits/s over 1.1 km of OM4 fiber is demonstrated and shown to be limited mainly by the photoreceiver bandwidth. A theoretical investigation of the dependence of link performance on photoreceiver bandwidth is also presented.

© 2013 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Research Papers

History
Original Manuscript: January 2, 2013
Revised Manuscript: May 7, 2013
Manuscript Accepted: May 10, 2013
Published: June 13, 2013

Citation
Rashid Safaisini, Krzysztof Szczerba, Petter Westbergh, Erik Haglund, Benjamin Kögel, Johan S. Gustavsson, Magnus Karlsson, Peter Andrekson, and Anders Larsson, "High-Speed 850 nm Quasi-Single-Mode VCSELs for Extended-Reach Optical Interconnects," J. Opt. Commun. Netw. 5, 686-695 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-7-686


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: what’s needed for datacenter network operations,” IEEE Commun. Mag., vol.  48, no. 7, pp. 32–39, July 2010. [CrossRef]
  2. H. Liu, C. F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks: opportunities and challenges for WDM,” in 18th IEEE Symp. High Performance Interconnects (HOTI), Mountain View, CA, 2010, pp. 113–116.
  3. A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 6, pp. 1552–1567, Dec. 2011. [CrossRef]
  4. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol., vol.  30, no. 4, pp. 448–457, Feb. 2012. [CrossRef]
  5. J. B. Schlager, M. J. Hackert, P. Pepejugoski, and J. Gwinn, “Measurements for enhanced bandwidth performance over 62.5 μm multimode fiber in short-wavelength local area networks,” J. Lightwave Technol., vol.  21, no. 5, pp. 1276–1285, May 2003. [CrossRef]
  6. A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF- and VCSEL-based gigabit Ethernet transmissions,” IEEE Photon. Technol. Lett., vol.  21, no. 10, pp. 645–647, June 2009. [CrossRef]
  7. R. E. Freund, C.-A. Bunge, N. N. Ledentsov, D. Molin, and C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol., vol.  28, no. 4, pp. 569–586, Feb. 2010. [CrossRef]
  8. P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, “15.6  Gb/s transmission over 1 km of next generation multimode fiber,” IEEE Photon. Technol. Lett., vol.  14, no. 5, pp. 717–719, May 2002. [CrossRef]
  9. P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850 nm VCSELs operating error-free at 40  Gbit/s up to 85°C,” IEEE Photon. Technol. Lett., vol.  25, no. 8, pp. 768–771, Apr. 2013. [CrossRef]
  10. E. Haglund, Å. Haglund, P. Westbergh, J. S. Gustavsson, B. Kögel, and A. Larsson, “25  Gbit/s transmission over 500 m multimode fibre using 850 nm VCSEL with integrated mode filter,” Electron. Lett., vol.  48, no. 9, pp. 517–518, Apr. 2012. [CrossRef]
  11. J. A. Lott, A. S. Payusov, S. A. Blokhin, P. Moser, and D. Bimberg, “Arrays of 850 nm photodiodes and vertical cavity surface emitting lasers for 25–40  Gbit/s optical interconnects,” Phys. Status Solidi C, vol.  9, no 2, pp. 290–293, 2012. [CrossRef]
  12. P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25  Gbit/s,” Electron. Lett., vol.  48, no. 20, pp. 1292–1294, Sept. 2012. [CrossRef]
  13. G. Fiol, J. A. Lott, N. N. Ledentsov, and D. Bimberg, “Multimode optical fibre communication at 25  Gbit/s over 300 m with small spectral-width 850 nm VCSELs,” Electron. Lett., vol.  47, no. 14, pp. 810–811, July 2011. [CrossRef]
  14. P. Moser, J. A. Lott, P. Wolf, G. Larisch, A. Payusov, N. Ledentsov, and D. Bimberg, “Energy-efficient oxide-confined 850 nm VCSELs for long distance multimode fiber optical interconnects,” IEEE J. Sel. Top. Quantum Electron., vol.  19, no. 2, 7900406, 2013. [CrossRef]
  15. R. Safaisini, K. Szczerba, E. Haglund, P. Westbergh, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “20  Gbit/s error-free operation of 850 nm oxide-confined VCSELs beyond 1 km of multimode fibre,” Electron. Lett., vol.  48, no. 19, pp. 1225–1227, Sept. 2012. [CrossRef]
  16. G. Giaretta, R. Michalzik, and A. J. Ritger, “Long distance (2.8 km), short wavelength (0.85 μm) data transmission at 10  Gb/sec over new generation high bandwidth multimode fiber,” in Conf. Lasers and Electro-Optics (CLEO), San Francisco, CA, 2000, pp. 678–679.
  17. B. M. Hawkins, R. A. Hawthorne, J. K. Guenter, J. A. Tatum, and J. R. Biard, “Reliability of various size oxide aperture VCSELs,” in Proc. 52nd Electronic Components and Technology Conf., San Diego, CA, 2002, pp. 540–550.
  18. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 6, pp. 1603–1613, Dec. 2011. [CrossRef]
  19. S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850 nm VCSELs,” IEEE J. Quantum Electron., vol.  46, no. 4, pp. 506–512, Apr. 2010. [CrossRef]
  20. “IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements Part 3: Carrier Sense Multiple Access With Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications—Section Four,” (Revision of IEEE Standard 802.3-2005), pp. 1–586, Dec. 2008.
  21. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, and A. Joel, “Speed enhancement of VCSELs by photon lifetime reduction,” Electron. Lett., vol.  46, no. 13, pp. 938–940, June 2010. [CrossRef]
  22. J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, “Dynamic behavior of fundamental-mode stabilized VCSELs using shallow surface relief,” IEEE J. Quantum Electron., vol.  40, no. 6, pp. 607–619, June 2004. [CrossRef]
  23. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. Stalnacke, “Modulation response measurements and evaluation of MQW InGaAsP lasers of various designs,” Proc. SPIE, vol.  2684, pp. 138–152, 1996. [CrossRef]
  24. L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. New Jersey: Wiley, 2012.
  25. Y. Ou, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Impedance characteristics and parasitic speed limitations of high speed 850 nm VCSELs,” IEEE Photon. Technol. Lett., vol.  21, no. 24, pp. 1840–1842, Dec. 2009. [CrossRef]
  26. P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett., vol.  48, no. 18, pp. 1145–1147, Aug. 2012. [CrossRef]
  27. P. Pepeljugoski, S. E. Golowich, A. J. Ritger, P. Kolesar, and A. Risteski, “Modeling and simulation of next-generation multimode fiber links,” J. Lightwave Technol., vol.  21, no. 5, pp. 1242–1255, May 2003. [CrossRef]
  28. K. Szczerba, P. Westbergh, J. Karout, J. Gustavsson, Å. Haglund, M. Karlsson, P. Andrekson, E. Agrell, and A. Larsson, “4-PAM for high-speed short-range optical communications,” J. Opt. Commun. Netw., vol.  4, no. 11, pp. 885–894, Nov. 2012. [CrossRef]
  29. D. M. Kuchta and C. J. Mahon, “Mode selective loss penalties in VCSEL optical fiber transmission links,” IEEE Photon. Technol. Lett., vol.  6, no. 2, pp. 288–290, 1994. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited