OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 7 — Jul. 1, 2013
  • pp: 711–721

Using a HAP Network to Transfer WiMAX OFDM Signals: Outage Probability Analysis

Nicholas Vaiopoulos, Harilaos G. Sandalidis, and Dimitris Varoutas  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 5, Issue 7, pp. 711-721 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (784 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transferring wireless broadband services across extremely far distances on Earth is usually implemented nowadays either by ground-based or satellite communications. Terrestrial networks require, however, heavy installation and maintenance costs, whereas satellite networks suffer from excessively high power requirements. An alternative but highly challenging solution is to employ a network consisting of high-altitude platforms (HAPs). In this paper, we propose a way of delivering WiMAX traffic using a serial multi-hop HAP network configuration. HAPs are located at specific locations in the stratosphere, pick up the traffic from the Earth region they cover, and communicate with each other using optical links. In such a configuration, we determine the WiMAX quality of service by evaluating the outage probability for the entire HAP network. The overall performance is examined by using a channel model that takes into account laser path loss and pointing error effects. The findings of the present study indicate that the consideration of specific network and channel model parameters is crucial toward the design and implementation of future multi-hop HAP networks.

© 2013 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(010.7060) Atmospheric and oceanic optics : Turbulence

ToC Category:
Research Papers

Original Manuscript: December 12, 2012
Revised Manuscript: March 12, 2013
Manuscript Accepted: May 8, 2013
Published: June 21, 2013

Nicholas Vaiopoulos, Harilaos G. Sandalidis, and Dimitris Varoutas, "Using a HAP Network to Transfer WiMAX OFDM Signals: Outage Probability Analysis," J. Opt. Commun. Netw. 5, 711-721 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Andrews and R. L. Philips, Laser Beam Propagation Through Random Media, 2nd ed. SPIE, 2005.
  2. D. G. Aviv, Laser Space Communications. Artech House, 2006.
  3. D. Grace and M. Mohorčič, Broadband Communications via High Altitude Platforms. Wiley, 2011.
  4. A. Aragón-Zavala, J. L. Cuevas-Ruíz, and J. A. Delgado-Penín, High-Altitude Platforms for Wireless Communications. Wiley, 2008.
  5. D. Grace, J. Thornton, G. Chen, G. White, and T. Tozer, “Improving system capacity of broadband services using multiple high altitude platforms,” IEEE Trans. Wireless Commun., vol.  4, no. 2, pp. 700–709, 2005. [CrossRef]
  6. S. Ahson and M. Ilyas, The WiMAX Handbook—Three-Volume Set. CRC Press, 2008.
  7. P. Likitthanasate, D. Grace, and P. Mitchell, “Coexistence performance of high altitude platform and terrestrial systems sharing a common downlink WiMAX frequency band,” Electron. Lett., vol.  41, no. 15, pp. 858–860, 2005. [CrossRef]
  8. Z. Yang, A. Mohammed, T. Hult, and D. Grace, “Downlink coexistence performance assessment and techniques for WiMAX services from high altitude platform and terrestrial deployments,” EURASIP J. Wireless Commun. Netw., vol.  2008, 291450, 2008. [CrossRef]
  9. Z. Yang, A. Mohammed, and T. Hult, “Performance evaluation of WiMAX broadband from high altitude platform cellular system and terrestrial coexistence capability,” EURASIP J. Wireless Commun. Netw., vol. 2008, 348626, 2008. [CrossRef]
  10. J. Thornton, A. D. White, and T. C. Tozer, “A WiMAX payload for high altitude platform experimental trials,” EURASIP J. Wireless Commun. Netw., vol. 2008, 498517, 2008. [CrossRef]
  11. N. Cvijetic and T. Wang, “WiMAX over free-space optics-evaluating OFDM multi-subcarrier modulation in optical wireless channels,” in Proc. IEEE Sarnoff Symp., Princeton, NJ, Mar. 2006.
  12. N. Cvijetic and T. Wang, “A MIMO architecture for IEEE 802.16d (WiMAX) heterogeneous wireless access using optical wireless technology,” in Next Generation Teletraffic and Wired/Wireless Advanced Networking. Springer-Verlag, 2006, pp. 441–451.
  13. I. Arruego, H. Guerrero, S. Rodriguez, J. Martinez-Oter, J. Jimenez, J. Dominguez, A. Martin-Ortega, J. de Mingo, J. Rivas, V. Apestigue, J. Sanchez, J. Iglesias, M. Alvarez, P. Gallego, J. Azcue, C. Ruiz de Galarreta, B. Martin, A. Alvarez-Herrero, M. Diaz-Michelena, I. Martin, F. Tamayo, M. Reina, M. Gutierrez, L. Sabau, and J. Torres, “OWLS: A ten-year history in optical wireless links for intra-satellite communications,” IEEE J. Sel. Areas Commun., vol.  27, no. 9, pp. 1599–1611, Dec. 2009. [CrossRef]
  14. F. Fidler, M. Knapek, J. Horwath, and W. R. Leeb, “Optical communications for high-altitude platforms,” IEEE J. Sel. Topics Quantum Electron., vol.  16, no. 5, pp. 1058–1070, Sept.–Oct. 2010.
  15. S. Arnon, “Minimization of outage probability of WiMAX link supported by laser link between a high-altitude platform and a satellite,” J. Opt. Soc. Am. A, vol.  26, no. 7, pp. 1545–1552, July 2009. [CrossRef]
  16. D. Kedar, D. Grace, and S. Arnon, “Laser nonlinearity effects on optical broadband backhaul communication links,” IEEE Trans. Aerosp. Electron. Syst., vol.  46, no. 4, pp. 1797–1803, Oct. 2010.
  17. M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, 9th ed. New York: Dover, 1972.
  18. M. Maqbool, M. Coupechoux, and P. Godlewski, “Comparison of various frequency reuse patterns for WiMAX networks with adaptive beamforming,” in Proc. of IEEE VTC Spring, Marina Bay, Singapore, 2008.
  19. T. Ohtsuki, “Multiple-subcarrier modulation in optical wireless communications,” IEEE Commun. Mag., vol.  41, no. 3, pp. 74–79, Mar. 2003. [CrossRef]
  20. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol., vol.  27, no. 3, pp. 189–204, Feb. 2009. [CrossRef]
  21. A. Bekkali, C. B. Naila, K. Kazaura, K. Wakamori, and M. Matsumoto, “Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by gamma-gamma distribution,” IEEE Photon. J., vol.  2, no. 3, pp. 510–520, June 2010. [CrossRef]
  22. S. Arnon, “Optimization of urban optical wireless communications systems,” IEEE Trans. Wireless Commun., vol.  2, no. 4, pp. 626–629, July 2003. [CrossRef]
  23. H. G. Sandalidis, “Optimization models for misalignment fading mitigation in optical wireless links,” IEEE Commun. Lett., vol.  12, no. 5, pp. 395–397, May 2008. [CrossRef]
  24. M. Dohler and Y. Li, Cooperative Communications: Hardware, Channel and PHY. Wiley, 2010.
  25. G. K. Karagiannidis, T. A. Tsiftsis, and H. G. Sandalidis, “Outage probability of relayed free space optical communication systems,” Electron. Lett., vol.  42, no. 17, pp. 994–995, Aug. 2006. [CrossRef]
  26. M. Uysal, Ed., Cooperative Communications for Improved Wireless Network Transmission: Framework for Virtual Antenna Array Applications. Information Science Reference, 2010.
  27. S. Arnon, “Optical wireless communications,” in Encyclopedia of Optical Engineering, R. G. Driggers, C. Hoffman, and R. Driggers, Eds. CRC Press, 2003, pp. 1866–1886.
  28. R. V. Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Artech House, 2000.
  29. W. Shieh and I. Djordjevic, OFDM for Optical Communications. Academic, 2010.
  30. J. C. Daly, “Fiber optic intermodulation distortion,” IEEE Trans. Commun., vol.  30, no. 8, pp. 1954–1958, Aug. 1982. [CrossRef]
  31. W. Huang and M. Nakagawa, “Nonlinear effect of direct-sequence CDMA in optical transmission,” in IEEE Global Telecommunications Conference (GLOBECOM), Dubai, Nov.18–20, 1994, pp. 1185–1189.
  32. C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun., vol.  37, no. 3, pp. 252–260, Mar. 1989. [CrossRef]
  33. K. Kiasaleh, “On the probability density function of signal intensity in free-space optical communications systems impaired by pointing jitter and turbulence,” Opt. Eng., vol.  33, no. 11, pp. 3748–3757, Nov. 1994. [CrossRef]
  34. H. Al-Raweshidy and E. S. Komaki, Eds., Radio Over Fiber Technologies for Mobile Communication Networks. Artech House, 2002.
  35. M. Toyoshima, T. Jono, K. Nakagawa, and A. Yamamoto, “Optimum divergence angle of a Gaussian beam wave in the presence of random jitter in free-space laser communication systems,” J. Opt. Soc. Am. A, vol.  19, no. 3, pp. 567–571, Mar. 2002. [CrossRef]
  36. A. Goldsmith, Wireless Communications. Cambridge University, 2005.
  37. A. Polishuk and S. Arnon, “Optimization of a laser satellite communication system with an optical preamplifier,” J. Opt. Soc. Am. A, vol.  21, no. 7, pp. 1307–1315, July 2004. [CrossRef]
  38. M. O. Hasna and M. S. Alouini, “Outage probability of multihop transmission over Nakagami fading channels,” IEEE Commun. Lett., vol.  7, no. 5, pp. 216–218, May 2003. [CrossRef]
  39. G. K. Karagiannidis, T. A. Tsiftsis, and R. N. Mallik, “Bounds for multihop relayed communications in Nakagami-m fading,” IEEE Trans. Commun., vol.  54, no. 1, pp. 18–22, Jan. 2006. [CrossRef]
  40. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. New York: Academic, 2008.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited