OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 7 — Jul. 1, 2013
  • pp: 722–729

Flexible Transponder Design Aided by Agile Binary Bit Encoder

Shaoliang Zhang, Fatih Yaman, and Ting Wang  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 5, Issue 7, pp. 722-729 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1681 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In order to accommodate variable bit rates and achieve flexible transmission distances, a binary bit encoding scheme is incorporated in the dual-polarization (DP) quadrature phase-shift keying (QPSK) transmitter to manipulate the signal polarization multiplexing schemes into polarization-multiplexed (PolMux), polarization-switched (PolSw), and polarization-alternated (PolAl) schemes, such that the transmission bit rate could vary among 4B, 3B, and 2B, where B stands for the baud rate of the DP-QPSK signal. With the versatile polarization schemes, the trade-off between the transmission performance and system bit rate could be flexibly adjusted depending on the system requirements and conditions. The performance of these modulation formats has been evaluated experimentally at 32 Gbaud in a dispersion-managed fiber (DMF) link. At a 0.5 dB system margin, the transmission reach of PolSw and PolAl QPSK increased to 6400 and 8500km, respectively, compared to the 4500km transmission distance using the PolMux QPSK signal. This improvement is attributed to the lower bit rate of PolSw QPSK (96Gbits/s) and PolAl QPSK (64Gbits/s) and to the superior characteristics of the PolSw and PolAl schemes. For example, PolAl QPSK performs as good as the PolMux BPSK format to show similar receiver sensitivity. At the end, a flexible transponder platform with full software-defined optics features is discussed using the proposed flexible transmitter configuration and other techniques, such as optical multi-tone generation and adaptive forward error correction, to enable the transponder to carry standard 10G/40G/100G data.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1660) Fiber optics and optical communications : Coherent communications

ToC Category:
Research Papers

Original Manuscript: December 7, 2012
Revised Manuscript: May 13, 2013
Manuscript Accepted: May 18, 2013
Published: June 21, 2013

Shaoliang Zhang, Fatih Yaman, and Ting Wang, "Flexible Transponder Design Aided by Agile Binary Bit Encoder," J. Opt. Commun. Netw. 5, 722-729 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y.-K. Huang, E. Ip, T. J. Xia, G. A. Wellbrock, M.-F. Huang, Y. Aono, T. Tajima, and M. Cvijetic, “Mixed line-rate transmission (112  Gbits/s, 450  Gbits/s, and 1.15  Tb/s) over 3560 km of field-installed fiber with filterless coherent receiver,” J. Lightwave Technol., vol.  30, no. 4, pp. 609–617, 2012. [CrossRef]
  2. L. Liu, H. Y. Choi, T. Tsuritani, I. Morita, R. M. Ramon Casellas, and R. Munoz, “First proof-of-concept demonstration of OpenFlow-controlled elastic optical networks employing flexible transmitter/receiver,” in Proc. Int. Conf. Photonics in Switching, 2012, paper PDP-1.
  3. E. Yamazaki, S. Yamanaka, Y. Kisaka, T. Nakagawa, K. Murata, E. Yoshida, T. Sakano, M. Tomizawa, Y. Miyamoto, S. Matsuoka, J. Matsui, A. Shibayama, J.-I. Abe, Y. Nakamura, H. Noguchi, K. Fukuchi, H. Onaka, K. Fukumitsu, K. Komaki, O. Takeuchi, Y. Sakamoto, H. Nakashima, T. Mizuochi, K. Kubo, Y. Miyata, H. Nishimoto, S. Hirano, and K. Onohara, “Fast optical channel recovery in field demonstration of 100  Gbit/s Ethernet over OTN using real-time DSP,” Opt. Express, vol.  19, no. 14, pp. 13179–13184, 2011. [CrossRef]
  4. Y. Aoki, Y. Inada, T. Ogata, L. Xu, S. Zhang, F. Yaman, and E. Mateo, “Next-generation 100  Gbits/s undersea optical communications,” IEEE Commun. Mag., vol.  50, no. 2, pp. s50–s57, 2012. [CrossRef]
  5. J.-X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20  Tbit/s transmission over 6860 km with sub-Nyquist channel spacing,” J. Lightwave Technol., vol.  30, no. 4, pp. 651–657, 2012. [CrossRef]
  6. D. Qian, M.-F. Huang, S. Zhang, P. N. Ji, Y. Shao, F. Yaman, E. Mateo, T. Wang, Y. Inada, T. Ogata, and Y. Aoki, “Transmission of 115×100G PDM-8QAM-OFDM channels with 4  bits/s/Hz spectral efficiency over 10,181 km,” in 37th European Conf. and Expo. on Optical Communications, 2011, paper Th.13.K.3.
  7. S. Zhang, Y. Zhang, M. F. Huang, F. Yaman, E. Mateo, D. Qian, L. Xu, Y. Shao, I. B. Djordjevic, and T. Wang, “Transoceanic transmission of 40×117.6  Gbits/s PDM-OFDM-16QAM over hybrid large-core/ultra low-loss fiber,” J. Lightwave Technol., vol.  30, pp. 3845–3856, 2012. [CrossRef]
  8. Y. K. Huang, M.-F. Huang, D. Qian, Y. Shao, E. Ip, T. Inoue, Y. Inada, T. Ogata, Y. Aoki, and T. Wang, “4×1.15  Tb/s DP-QPSK superchannel transmission over 10,181 km of EDFA amplified hybrid large-core/ultra low-loss fiber spans with 2 db FEC margin,” Proc. SPIE, vol.  8309, 83092A, 2011.
  9. J.-X. Cai, H. G. Batshon, H. Zhang, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “25  Tb/s transmission over 5,530 km using 16QAM at 5.2  b/s/hz spectral efficiency,” Opt. Express, vol.  21, pp. 1555–1560, 2013. [CrossRef]
  10. H. Zhang, J.-X. Cai, H. G. Batshon, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “16QAM transmission with 5.2  bits/s/Hz spectral efficiency over transoceanic distance,” Opt. Express, vol.  20, no. 11, pp. 11688–11693, 2012. [CrossRef]
  11. M. Mazurczyk, D. G. Foursa, H. G. Batshon, H. Zhang, C. R. Davidson, J.-X. Cai, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30  Tb/s transmission over 6,630 km using 16QAM signals at 6.1  bits/s/hz spectral efficiency,” in European Conf. and Exhibition on Optical Communication, 2012, paper Th.3.C.2.
  12. C. Behrens, D. Lavery, D. Millar, S. Makovejs, B. C. Thomsen, R. Killey, S. Savory, and P. Bayvel, “Ultra-long-haul transmission of 7×42.9  Gbit/s PS-QPSK and PM-BPSK,” in 37th European Conf. and Expo. on Optical Communications, 2011, paper Mo.2.B.2.
  13. M. Sjödin, P. Johannisson, H. Wymeersch, P. A. Andrekson, and M. Karlsson, “Comparison of polarization-switched QPSK and polarization-multiplexed QPSK at 30  Gbit/s,” Opt. Express, vol.  19, no. 8, pp. 7839–7846, 2011. [CrossRef]
  14. E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol., vol.  27, no. 22, pp. 5115–5126, 2009. [CrossRef]
  15. J. Renaudier, O. B. Pardo, H. Mardoyan, M. Salsi, P. Tran, E. Dutisseuil, G. Charlet, and S. Bigo, “Experimental comparison of 28 Gbaud polarization switched- and polarization division multiplexed- QPSK in WDM long-haul transmission system,” in 37th European Conf. and Expo. on Optical Communications, 2011, paper Mo.2.B.3.
  16. A. H. Gnauck, J. Leuthold, C. Xie, I. Kang, S. Chandrasekhar, P. Bernasconi, C. Doerr, L. Buhl, J. D. Bull, N. A. F. Jaeger, H. Kato, and A. Guest, “6×42.7  Gb/s transmission over ten 200 km EDFA-amplified SSMF spans using polarization-alternating RZ-DPSK,” in Optical Fiber Communication Conf., 2004, paper PD35.
  17. C. Xie, I. Kang, A. H. Gnauck, L. Möller, L. F. Mollenauer, and A. R. Grant, “Suppression of intrachannel nonlinear effects with alternate-polarization formats,” J. Lightwave Technol., vol.  22, no. 3, pp. 806–812, 2004. [CrossRef]
  18. “PatternPro serial data test instruments” [Online]. Available: http://www.picosecond.com/applications/content.asp?spid=120 .
  19. S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron., vol.  16, no. 5, pp. 1164–1179, 2010. [CrossRef]
  20. S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Decision-aided carrier phase estimation for coherent optical communications,” J. Lightwave Technol., vol.  28, no. 11, pp. 1597–1607, 2010. [CrossRef]
  21. D. S. Millar and S. J. Savory, “Blind adaptive equalization of polarization-switched QPSK modulation,” Opt. Express, vol.  19, no. 9, pp. 8533–8538, 2011. [CrossRef]
  22. L. E. Nelson, X. Zhou, N. M. Suibhne, A. D. Ellis, and P. Magill, “Experimental comparison of coherent polarization-switched QPSK to polarization-multiplexed QPSK for 10×100  km WDM transmission,” Opt. Express, vol.  19, no. 11, pp. 10849–10856, 2011. [CrossRef]
  23. M. Eiselt, B. Teipen, K. Grobe, A. Autenrieth, and J.-P. Elbers, “Programmable modulation for high-capacity networks,” in 37th European Conf. and Expo. on Optical Communications, 2011, paper Tu.5.A.5.
  24. H. Takara, T. Goh, K. Shibahara, K. Yonenaga, S. Kawai, and M. Jinno, “Experimental demonstration of 400  Gbits/s multi-flow, multi-rate, multi-reach optical transmitter for efficient elastic spectral routing,” in 37th European Conf. and Expo. on Optical Communications, 2011, paper Tu.5.A.4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited