OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 7 — Jul. 1, 2013
  • pp: 730–740

Cost-Effective Scalable and Robust Star-Cross-Bus PON Architecture Using a Centrally Controlled Hybrid Restoration Mechanism

Hehong Fan, Jianqing Li, and Xiaohan Sun  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 7, pp. 730-740 (2013)
http://dx.doi.org/10.1364/JOCN.5.000730


View Full Text Article

Enhanced HTML    Acrobat PDF (947 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With traffic carried by fiber access networks continuously increasing, the survivability and scalability of networks have become critical for their applicability. In this paper, a low-redundancy passive optical network (PON) architecture using a star-cross-bus topology is presented along with a scale-differentiated, centrally controlled hybrid failure localization and restoration procedure. The network can provide protections for the feeder and distribution fibers as well as the optical line terminal transceivers, where multiple failures can be restored within 2.1–8.2 μs with local failures restored locally. Analyses show that the network is highly survivable and that its expected survivability for a 128-ONU PON with 16 failures can be 8%, 9 times, and 8 times higher than those of dual-feeder-star, ring, and dual-ring networks, respectively. In addition, the network is also scalable such that hundreds of to a thousand optical network units (ONUs) can be accessed for loss budgets of 30–40 dB.

© 2013 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4257) Fiber optics and optical communications : Networks, network survivability
(060.4261) Fiber optics and optical communications : Networks, protection and restoration

ToC Category:
Research Papers

History
Original Manuscript: June 6, 2012
Revised Manuscript: January 30, 2013
Manuscript Accepted: April 18, 2013
Published: June 26, 2013

Citation
Hehong Fan, Jianqing Li, and Xiaohan Sun, "Cost-Effective Scalable and Robust Star-Cross-Bus PON Architecture Using a Centrally Controlled Hybrid Restoration Mechanism," J. Opt. Commun. Netw. 5, 730-740 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-7-730


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Machuca, J. Chen, and L. Wosinska, “Cost-efficient protection in TDM PONs,” IEEE Commun. Mag., vol.  50, no. 8, pp. 110–117, 2012. [CrossRef]
  2. E. S. Son, K. H. Han, J. H. Lee, and Y. C. Chung, “Survivable network architectures for WDM PON,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf., 2005, paper OFI4.
  3. K. Lee, S. B. Lee, J. H. Lee, Y. G. Han, S. G. Mun, S. M. Lee, and C. H. Lee, “A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs,” Opt. Express, vol.  15, no. 8, pp. 4863–4868, 2007. [CrossRef]
  4. K. Lee, S. G. Mun, C. H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett., vol.  20, no. 9, pp. 679–681, May 2008. [CrossRef]
  5. X. Sun, C.-K. Chan, and L. K. Chen, “A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration,” IEEE Photon. Technol. Lett., vol.  18, no. 4, pp. 631–633, Feb. 2006. [CrossRef]
  6. C.-H. Yeh and S. Chi, “Self-healing ring-based time-sharing passive optical networks,” IEEE Photon. Technol. Lett., vol.  19, no. 15, pp. 1139–1141, 2007. [CrossRef]
  7. Z. Wang, X. Sun, C. Lin, C. K. Chan, and L. K. Chen, “A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks,” IEEE Photon. Technol. Lett., vol.  17, no. 3, pp. 717–719, 2005. [CrossRef]
  8. Y. Liu, L. Guo, and X. Wei, “Optimizing backup optical-network-units selection and backup fibers deployment in survivable hybrid wireless-optical broadband access networks,” J. Lightwave Technol., vol.  30, no. 10, pp. 1509–1523, 2012. [CrossRef]
  9. T. Feng and L. Ruan, “Design of a survivable hybrid wireless-optical broadband access network,” J. Opt. Commun. Netw., vol.  3, no. 5, pp. 458–464, 2011. [CrossRef]
  10. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol., vol.  30, no. 4, pp. 384–398, Feb. 2012. [CrossRef]
  11. N. Cvijetic, M. Cvijetic, M.-F. Huang, E. Ip, Y. K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol., vol.  30, no. 4, pp. 493–503, 2012. [CrossRef]
  12. A. R. Dhaini, C. M. Assi, M. Maier, and A. Shami, “Dynamic wavelength and bandwidth allocation in hybrid TDM/WDM EPON Networks,” J. Lightwave Technol., vol.  25, no. 1, pp. 277–286, 2007. [CrossRef]
  13. Y.-L. Hsueh, M. S. Rogge, S. Yamamoto, and L. G. Kazovsky, “A highly flexible and efficient passive optical network employing dynamic wavelength allocation,” J. Lightwave Technol., vol.  23, no. 1, pp. 277–286, 2005. [CrossRef]
  14. M. Ruffini, D. Mehta, B. O’Sullivan, L. Quesada, L. Doyle, and D. B. Payne, “Deployment strategies for protected long-reach PON,” J. Opt. Commun. Netw., vol.  4, no. 2, pp. 118–129, 2012. [CrossRef]
  15. “Gigabit-Capable Passive Optical Network (GPON): General Characteristics,” , 2003.
  16. “Gigabit-capable Passive Optical Networks (G-PON): Transmission convergence layer specification,” , 2004.
  17. W. Vivian, “General Introduction of Tunable Filters” [Online]. Available: http://www.lightwaves2020.com/publications/lightvision/newsletter-Jun-2008.pdf .
  18. S. C. Liew and K. W. Lu, “A framework for characterizing disaster-based network survivability,” IEEE J. Sel. Areas Commun., vol.  12, no. 1, pp. 52–58, 1994. [CrossRef]
  19. W. Molisz, “Survivability function—A measure of disaster-based routing performance,” IEEE J. Sel. Areas Commun., vol.  22, no. 9, pp. 1876–1883, 2004. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited