OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 9 — Sep. 1, 2013
  • pp: 1043–1056

Collision-Free Bandwidth-Variable Optical Burst Switching Ring Network

Ping Zhang, Bingli Guo, Juhao Li, Yongqi He, Zhangyuan Chen, and Hequan Wu  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 5, Issue 9, pp. 1043-1056 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently, flexible bandwidth allocation has been proposed in an orthogonal frequency division multiplexing based elastic optical network, which is a promising technology for 100G and beyond optical networks. In this paper, for the first time we introduce flexible bandwidth to an optical burst switching (OBS) ring network and propose a novel bandwidth-variable OBS (BV-OBS) ring network. In the proposed BV-OBS ring network, the durations of bursts are fixed to one timeslot in the time domain, while the bandwidths are variable in the frequency domain according to the burst size. With fixed burst duration and variable bandwidth, the BV-OBS ring can achieve the state of being collision free with high bandwidth efficiency. Simulation results show that a BV-OBS ring network outperforms previous OBS rings proposed in wavelength division multiplexing networks in both network throughput and end-to-end delay.

© 2013 Optical Society of America

OCIS Codes
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4259) Fiber optics and optical communications : Networks, packet-switched
(060.4262) Fiber optics and optical communications : Networks, ring

ToC Category:
Research Papers

Original Manuscript: December 4, 2012
Revised Manuscript: May 16, 2013
Manuscript Accepted: July 10, 2013
Published: August 23, 2013

Ping Zhang, Bingli Guo, Juhao Li, Yongqi He, Zhangyuan Chen, and Hequan Wu, "Collision-Free Bandwidth-Variable Optical Burst Switching Ring Network," J. Opt. Commun. Netw. 5, 1043-1056 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Qiao and M. S. Yoo, “Optical burst switching (OBS)—A new paradigm for an optical Internet,” J. High Speed Netw., vol.  8, pp. 69–84, 1999.
  2. M. Yoo and C. Qiao, “Just-enough-time (JET): A high speed protocol for bursty traffic in optical networks,” in IEEE/LEOS Technologies for a Global Information Infrastructure, 1997, pp. 26–27.
  3. J. Y. Wei and R. I. McFarland, “Just-in-time signaling for WDM optical burst switching networks,” J. Lightwave Technol., vol.  18, pp. 2019–2037, Dec. 2000. [CrossRef]
  4. L.-M. Peng and Y.-C. Kim, “Investigation of the design of MAC protocols for TT-TR-based WDM burst-switched ring networks,” J. Opt. Commun. Netw., vol.  1, pp. A25–A34, 2009.
  5. N. Deng, Q. Xue, M. Li, A. Lord, P. Willis, S. Cao, and Z. Feng, “Network modelling and techno-economic analysis of optical burst ring for metropolitan applications,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), Amsterdam, The Netherlands, 2012, paper P5.07.
  6. C. Li, N. Deng, M. Li, Q. Xue, and P. Wai, “Performance analysis and experimental demonstration of a novel network architecture using optical burst rings for interpod communications in data centers,” IEEE J. Sel. Top. Quantum Electron., vol.  19, no. 2, 3700508, 2012.
  7. L. M. Peng, C. H. Youn, W. Tang, and C. M. Qiao, “A novel approach to optical switching for intradatacenter networking,” J. Lightwave Technol., vol.  30, no. 2, pp. 252–266, Jan. 2012. [CrossRef]
  8. N. Deng, Q. Xue, M. Li, G. Gong, and C. Qiao, “An optical multi-ring burst network for a data center,” in Optical Fiber Communication Conf. (OFC), Anaheim, CA, 2013, paper OTh1A.5.
  9. L. Xu, H. G. Perros, and G. N. Rouskas, “A simulation study of optical burst switching and access protocols for WDM ring networks,” Comput. Netw., vol.  41, no. 2, pp. 143–160, Feb. 2003. [CrossRef]
  10. Y. Arakawa, N. Yamanaka, and I. Sasase, “Optical burst switched ring network with upstream prioritized switching and distributed fairness control,” Electron. Commun. Jpn., vol.  90, pp. 30–39, 2007.
  11. J. P. Park and M. S. Lee, “Simultaneous burst and burst control packet transmission protocol for optical burst switching ring networks,” ETRI J., vol.  29, pp. 116–119, 2007. [CrossRef]
  12. A. Fumagalli and P. Krishnamoorthy, “A low-latency and bandwidth-efficient distributed optical burst switching architecture for metro ring,” in Proc. ICC, Alaska, May 2003, vol. 2, pp. 1340–1344.
  13. H.-T. Lin and W.-R. Chang, “CORNet: A scalable and bandwidth-efficient optical burst switching ring architecture for metro area networks,” in Proc. of 2006 Int. Conf. on Networking and Services, California, July 2006.
  14. J. Triay and C. Cervello-Pastor, “Distributed contention avoidance in optical burst-switched ring networks,” in Proc. of 11th IEEE Int. Conf. on Communication Systems (ICCS), Singapore, 2008, pp. 715–720.
  15. A. Ge, F. Callegati, and L. S. Tamil, “On optical burst switching and self-similar traffic,” IEEE Commun. Lett., vol.  4, pp. 98–100, Mar. 2000. [CrossRef]
  16. V. M. Vokkarane, K. Haridoss, and J. P. Jue, “Threshold-based burst assembly policies for QoS support in optical burst-switched networks,” in Proc. SPIE, vol.  4874, pp. 125–136, July 2002.
  17. S. Oh, H. H. Hong, and M. Kang, “A data burst assembly algorithm in optical burst switching networks,” ETRI J., vol.  24, no. 4, pp. 311–322, 2002. [CrossRef]
  18. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol., vol.  27, pp. 189–204, 2009. [CrossRef]
  19. C. Zhao, Y. Chen, S. Zhang, J. Li, F. Zhang, L. Zhu, and Z. Chen, “Experimental demonstration of 1.08  Tb/s PDM CO-SCFDM transmission over 3170 km SSMF,” Opt. Express, vol.  20, no. 2, pp. 787–793, 2012. [CrossRef]
  20. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, pp. 66–73, 2009.
  21. S. Thiagarajan, M. Frankel, and D. Boertjes, “Spectrum efficient super-channels in dynamic flexible grid networks—A blocking analysis,” in Optical Fiber Communication Conf. (OFC), Los Angeles, CA, 2011, paper OTuI6.
  22. A. Castro, L. Velasco, M. Ruiz, M. A. Klinkowski, J. P. Fernández-Palacios, and D. Careglio, “Dynamic routing and spectrum (re)allocation in future flexgrid optical networks,” Comput. Netw., vol.  56, pp. 2869–2883, 2012. [CrossRef]
  23. Y. Yin, K. Wen, D. J. Geisler, R. Liu, and S. Yoo, “Dynamic on-demand defragmentation in flexible bandwidth elastic optical networks,” Opt. Express, vol.  20, pp. 1798–1804, 2012. [CrossRef]
  24. R. Dischler, F. Buchali, and A. Klekamp, “Demonstration of bit rate variable ROADM functionality on an optical OFDM superchannel,” in Optical Fiber Communication Conf. (OFC), San Diego, CA, Mar. 2010, paper OTuM7.
  25. Y. Chen, J. Li, C. Zhao, L. Zhu, F. Zhang, Y. He, and Z. Chen, “Experimental demonstration of ROADM functionality on an optical SCFDM superchannel,” IEEE Photon. Technol. Lett., vol.  24, pp. 215–217, 2012.
  26. Y. Qi, T. Yan, M. Yiran, and W. Shieh, “Experimental demonstration and numerical simulation of 107  Gb/s high spectral efficiency coherent optical OFDM,” J. Lightwave Technol., vol.  27, pp. 168–176, 2009. [CrossRef]
  27. T. Omiya, M. Yoshida, and M. Nakazawa, “400  Gbit/s 256 QAM-OFDM transmission over 720 km with a 14  bit/s/Hz spectral efficiency by using high-resolution FDE,” Opt. Express, vol.  21, no. 3, pp. 2632–2641, 2013. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited