OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 9 — Sep. 1, 2013
  • pp: 1076–1082

Ultra-Wideband and 60-GHz Generation and Transmission Over a Wavelength Division Multiplexing-Passive Optical Network

Weilin Liu, Tong Shao, and Jianping Yao  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 5, Issue 9, pp. 1076-1082 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (959 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel scheme to simultaneously generate an on–off keying (OOK) impulse radio ultra-wideband (IR-UWB) signal, a 60-GHz millimeter-wave (mmW) signal, and a baseband signal in the optical domain using a Sagnac loop is proposed and demonstrated. In the proposed system, a polarization beam splitter (PBS), a fiber Bragg grating (FBG), and two back-to-back connected polarization modulators (PolMs) are incorporated in the Sagnac loop. An OOK Gaussian pulse signal is modulated on a clockwise transmitted optical carrier by the first PolM and then converted to an OOK UWB impulse signal at the FBG serving as an edge filter, and the counterclockwise transmitted optical carrier is simultaneously modulated by a baseband signal and a 30-GHz mmW signal at the second PolM. By introducing a π phase shift between the clockwise and counterclockwise optical carriers, the optical carrier of the 30-GHz signal is suppressed when applied to a polarizer. As a result, a frequency-doubled mmW signal at 60 GHz is generated by beating the two first order sidebands at a photodetector. Due to the velocity mismatch between the counterclockwise light wave and the clockwise microwave carrier, the OOK signal and the baseband signal can travel through the other PolM with negligible modulation; thus no interference from another signal would be introduced. Error-free transmission of a UWB signal at 2.5 Gbps and a wired baseband signal at 2.5 and 5 Gbps over a 25-km single-mode fiber is achieved. A frequency-doubled mmW signal at 60 GHz is also obtained.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Research Papers

Original Manuscript: May 6, 2013
Revised Manuscript: July 9, 2013
Manuscript Accepted: July 13, 2013
Published: August 28, 2013

Weilin Liu, Tong Shao, and Jianping Yao, "Ultra-Wideband and 60-GHz Generation and Transmission Over a Wavelength Division Multiplexing-Passive Optical Network," J. Opt. Commun. Netw. 5, 1076-1082 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag., vol.  41, no. 7, pp. 66–74, July 2003. [CrossRef]
  2. A. Kim, Y. H. Joo, and Y. Kim, “60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs,” IEEE Trans. Consum. Electron., vol.  50, no. 2, pp. 517–520, May 2004. [CrossRef]
  3. IEEE Standard for Information Technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements. Part 15.3: Wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs). Amendment 2: Millimeter-wave-based alternative physical layer extension, (Amendment to IEEE Std 802.15.3-2003), 2009.
  4. http://www.ecma-international.org/publications/standards/Ecma-387.htm .
  5. http://www.wirelesshd.org/about/specification-summary/ .
  6. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag., vol.  4, no. 2, pp. 36–47, June 2003. [CrossRef]
  7. H. Arslan, Z. N. Chen, and M. Benedetto, Ultra Wideband Wireless Communication.Hoboken, NJ: Wiley, 2006.
  8. L. Nöel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high capacity 60 GHz fiber-radio transmission systems,” IEEE Trans. Microwave Theory Tech., vol.  45, no. 8, pp. 1146–1423, Aug. 1997. [CrossRef]
  9. P. Smulders, “Exploring the 60 GHz band for local wireless multimedia access: Prospects and future directions,” IEEE Commun. Mag., vol.  40, no. 1, pp. 140–147, Jan. 2002. [CrossRef]
  10. A. Alomainy, Y. Hao, C. G. Parini, and P. S. Hall, “Comparison between two different antennas for UWB on-body propagation measurements,” IEEE Antennas Wireless Propag. Lett., vol.  4, pp. 31–34, June 2005. [CrossRef]
  11. S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-wave propagation channel characterization for short-range wireless communications,” IEEE Trans. Veh. Technol., vol.  58, no. 1, pp. 3–13, Jan. 2009. [CrossRef]
  12. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division multiplexed passive optical network (WDM-PON) technologies for broadband access—A review,” J. Opt. Netw., vol.  4, no. 11, pp. 737–758, Nov. 2005. [CrossRef]
  13. Y. C. Chung, “Recent advancement in WDM PON technology,” in 37th European Conf. on Optical Communication (ECOC), Geneva, Sept. 2011, paper TH.11.C.4.
  14. S. Pan and J. P. Yao, “Simultaneous provision of UWB and wired services in a WDM-PON network using a centralized light source,” IEEE Photon. J., vol.  2, no. 5, pp. 712–718, Oct. 2010. [CrossRef]
  15. S. Pan and J. P. Yao, “Provision of IR-UWB wireless and baseband wired services over a WDM-PON,” Opt. Express, vol.  19, no. 26, pp. B209–B217, Dec. 2011. [CrossRef]
  16. J. J. V. Olmos, T. Kuri, and K. Kitayama, “Reconfigurable radio-over-fiber networks: Multiple-access functionality directly over the optical layer,” IEEE Trans. Microwave Theory Tech., vol.  58, no. 11, pp. 3001–3010, Dec. 2010. [CrossRef]
  17. T. Shao, F. Paresys, Y. Le Guennec, G. Maury, N. Corrao, and B. Cabon, “Convergence of 60 GHz radio over fiber and WDM-PON using parallel phase modulation with a single Mach-Zehnder modulator,” J. Lightwave Technol., vol.  30, no. 17, pp. 2824–2831, Sept. 2012. [CrossRef]
  18. C. Y. Li, H. S. Su, C. H. Chang, H. H. Lu, P. Y. Wu, C. Y. Chen, and C. L. Ying, “Generation and transmission of BB/MW/MMW signals by cascading PM and MZM,” J. Lightwave Technol., vol.  30, no. 3, pp. 298–303, Feb. 2012. [CrossRef]
  19. C. Ye, L. Zhang, M. Zhu, J. Yu, S. He, and G. K. Chang, “A bidirectional 60 GHz wireless-over-fiber transport system with centralized local oscillator service delivered to mobile terminals and base stations,” IEEE Photon. Technol. Lett., vol.  24, no. 22, pp. 1984–1987, Nov. 2012. [CrossRef]
  20. W. Liu, M. Wang, and J. P. Yao, “Tunable microwave and sub-terahertz generation based on frequency quadrupling using a single polarization modulator,” J. Lightwave Technol., vol.  31, no. 10, pp. 1636–1644, May 2013. [CrossRef]
  21. Q. Wang, J. P. Yao, and J. D. Bull, “Negative tap photonic microwave filter based on a Mach–Zehnder modulator and a tunable optical polarizer,” IEEE Photon. Technol. Lett., vol.  19, no. 21, pp. 1750–1752, Nov. 2007. [CrossRef]
  22. G. K. Chang, A. Chowdhury, Z. S. Jia, H. C. Chien, M. F. Huang, J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw., vol.  1, no. 4, pp. C35–C50, Sept. 2009. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited