OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 5, Iss. 9 — Sep. 1, 2013
  • pp: 945–956

Scaling Star-Coupler-Based Optical Networks for Avionics Applications

Qi Li, Sebastien Rumley, Madeleine Glick, Johnnie Chan, Howard Wang, Keren Bergman, and Raj Dutt  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 5, Issue 9, pp. 945-956 (2013)
http://dx.doi.org/10.1364/JOCN.5.000945


View Full Text Article

Enhanced HTML    Acrobat PDF (1194 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work scaling of an optical broadcast-and-select network based on a passive star coupler is explored for avionics applications. Each client in the network is equipped with a transmitter unit and a multichannel receiver capable of receiving signals from all other clients connected to the star coupler. We propose a connecting node concept to scale the number of clients supported by the architecture. These connecting nodes act as bridges between star couplers, enabling the organization of several star couplers into a topology with additional clients. This design is modeled in the PhoenixSim simulation environment, and system-level simulation results are reported. We then propose the ring topology and dimension-N topology to interconnect and scale star couplers. Finally we compare the ring and dimension-N topologies in terms of scalability limit at different crossing traffic loads, revealing the trade-offs between latency, system complexity, and scalability. Our study shows that a robust, low-latency network of up to hundreds of clients, sufficient for current and next-generation avionics applications, can be built using off-the-shelf and near-term commercial technology.

© 2013 Optical Society of America

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(060.4252) Fiber optics and optical communications : Networks, broadcast
(060.4258) Fiber optics and optical communications : Networks, network topology

ToC Category:
Research Papers

History
Original Manuscript: April 2, 2013
Revised Manuscript: June 17, 2013
Manuscript Accepted: June 28, 2013
Published: August 7, 2013

Citation
Qi Li, Sebastien Rumley, Madeleine Glick, Johnnie Chan, Howard Wang, Keren Bergman, and Raj Dutt, "Scaling Star-Coupler-Based Optical Networks for Avionics Applications," J. Opt. Commun. Netw. 5, 945-956 (2013)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-5-9-945


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. F.  Habiby, M. J.  Hackert, “RONIA results: WDM-based optical networks in aircraft applications,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf., 2008, pp. 71–72.
  2. M.-Y.  Nam, E.  Seo, L.  Sha, K.-J.  Park, K.  Kang, “Limiting worst-case end-to-end latency when traffic increases in a switched avionics network,” in IEEE 17th Int. Conf. on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2011, vol. 1, pp. 285–294.
  3. M.  Masanovic, L. A.  Johansson, J.  Barton, “Widely tunable optical transceiver for avionic WDM networks,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 23–24.
  4. G. J.  Whaley, R. J.  Karnopp, “Air Force highly integrated photonics program: Development and demonstration of an optically transparent fiber optic network for avionics applications,” Proc. SPIE, vol.  7700, 77000A, Apr. 2010. [CrossRef]
  5. J.  Levis, B.  Sutterfield, R.  Stevens, “Fiber optic communication within the F-35 mission systems,” in IEEE Conf. Avionics Fiber-Optics and Photonics, 12–14 Sept. 2006, pp. 12–13.
  6. D. E.  Anderson, M. W.  Beranek, “777 optical LAN technology review,” in 48th IEEE Electronic Components & Technology Conf., 1998, pp. 386–390.
  7. A. A. R.  Lee, S. D.  Rayner, “Avionic architectures incorporating optical fibre technology,” in IEEE Conf. Avionics Fiber-Optics and Photonics, 12–14 Sept. 2006, pp. 10–11.
  8. J.  Chan, G.  Hendry, A.  Biberman, K.  Bergman, L. P.  Carloni, “PhoenixSim: A simulator for physical-layer analysis of chip-scale photonic interconnection networks,” in Proc. Conf. on Design, Automation and Test in Europe, Mar. 2010, pp. 691–696.
  9. Demartek, “High performance fibre channel switch vs. unified port switch technology” [Online]. Available: http://www.demartek.com/Reports_Free/Demartek_Brocade_6510_FC_Switch_Latency_Evaluation_2012-09.pdf .
  10. R.  Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron., vol.  12, no. 6, pp. 1678–1687, 2006. [CrossRef]
  11. C.  Reardon, J.  Profumo, A.  George, “Comparative simulative analysis of WDM LANs for avionics platforms,” in IEEE Military Communications Conf., 2006.
  12. S. F.  Habiby, R.  Vaidyanathan, “WDM optical backbone networks in aircraft applications: Networking challenges and standards progress,” in IEEE Military Communications Conf., 18–21 Oct. 2009, pp. 1–6.
  13. J.  Jackel, “Advances in optical networking for aerospace platform applications,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 5–6.
  14. D.  Drury, “Satellite optical backplane,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 2011, pp. 17–18.
  15. D.  Coudert, A.  Ferreira, X.  Munoz, “A multihop multi-OPS optical interconnection network,” J. Lightwave Technol., vol.  18, no. 12, pp. 2076–2085, Dec. 2000. [CrossRef]
  16. G.  Gravenstreter, R. G.  Melhem, D. M.  Chiarulli, S. P.  Levitan, J. P.  Teza, “The partitioned optical passive stars (POPS) topology,” in Proc. 9th Int. Parallel Processing Symp., 25–28 Apr. 1995, pp. 4–10.
  17. R.  Chipalkatti, Z.  Zhang, A. S.  Acampora, “Protocols for optical star-coupler network using WDM: Performance and complexity study,” IEEE J. Sel. Areas Commun., vol.  11, no. 4, pp. 579–589, May 1993. [CrossRef]
  18. S. B.  Tridandapani, B.  Mukherjee, “Channel sharing in multi-hop WDM lightwave networks: Realization and performance of multicast traffic,” IEEE J. Sel. Areas Commun., vol.  15, no. 3, pp. 488–500, 1997. [CrossRef]
  19. M. S.  Goodman, H.  Kobrinski, M. P.  Vecchi, R. M.  Bulley, J. L.  Gimlett, “The LAMBDANET multiwavelength network: Architecture, applications, and demonstrations,” IEEE J. Sel. Areas Commun., vol.  8, no. 6, pp. 995–1004, 1990. [CrossRef]
  20. K. R.  Desai, K.  Ghose, “An evaluation of communication protocols for star-coupled multidimensional WDM networks for multiprocessors,” in Proc. 2nd Int. Conf. on Massively Parallel Processing Using Optical Interconnections, 1995, pp. 42–49.
  21. Q.  Li, N.  Ophir, L.  Xu, K.  Padmaraju, L.  Chen, M.  Lipson, K.  Bergman, “Experimental characterization of the optical-power upper bound in a silicon microring modulator,” in IEEE Optical Interconnects Conf., May 2012, pp. 38–39.
  22. Y.  Kuo, M.  Kwakernaak, X.  Sun, J.  Pescatore, M.  Gilmer, J.  Oakley, Z.  Ji, A.  Nikolov, “Integrated multi-wavelength silicon germanium high speed receivers,” in Integrated Photonics Research, Silicon and Nanophotonics (IPRSN), 2010, paper IWF3.
  23. J.  Chan, G.  Hendry, K.  Bergman, L. P.  Carloni, “Physical-layer modeling and system-level design of chip-scale photonic interconnection networks,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.  30, no. 10, pp. 1507–1520, Oct. 2011. [CrossRef]
  24. G.  Hendry, E.  Robinson, V.  Gleyzer, J.  Chan, L. P.  Carloni, N.  Bliss, K.  Bergman, “Time-division-multiplexed arbitration in silicon nanophotonic networks-on-chip for high-performance chip multiprocessors,” J. Parallel Distrib. Comput., vol.  71, no. 5, pp. 641–650, May 2011. [CrossRef]
  25. A.  Varga, “OMNeT++ discrete event simulation system” [Online]. Available: http://www.omnetpp.org .
  26. Q.  Li, R.  Hendry, J.  Chan, K.  Bergman, M.  Glick, R.  Dutt, “Network simulation of passive optical broadcast-and-select network for avionics applications,” presented at the Government Microcircuit Applications and Critical Technology Conf. (GOMACTech-13), Las Vegas, Nov. 2013.
  27. T.  Saito, K.  Nara, K.  Tanaka, Y.  Nekado, J. I.  Hasegawa, K.  Kashihara, “Temperature-insensitive (athermal) AWG modules,” Furukawa Rev., vol.  24, pp. 29–33, 2003.
  28. S.  Kamei, Y.  Inoue, A.  Kaneko, T.  Shibata, H.  Takahashi, “Recent progress on athermal AWG wavelength multiplexer,” Proc. SPIE, vol.  6014, 60140H, Oct. 2005. [CrossRef]
  29. X.  Wang, S.  Xiao, W.  Zheng, F.  Wang, Y.  Hao, X.  Jiang, M.  Wang, J.  Yang, “Slot-based athermal silicon arrayed-waveguide grating (AWG),” Proc. SPIE, vol.  7134, 71340X, 2008. [CrossRef]
  30. S.  Nishimura, H.  Inoue, S.  Hanatani, H.  Matsuoka, T.  Yokota, “Optical interconnections for the massively parallel computer,” IEEE Photon. Technol. Lett., vol.  9, no. 7, pp. 1029–1031, July 1997. [CrossRef]
  31. The F-35 Lightning II Program [Online]. Available: http://www.jsf.mil/f35/f35_variants.htm .
  32. Boeing, “747–8 Technical Characterizations” [Online]. Available: http://www.boeing.com/boeing/commercial/747family/747-8_fact_sheet.page .
  33. J.  Zhang, Y.  An, M. S.  Berger, A. T.  Clausen, “Wavelength and fiber assignment problems on avionic networks,” in IEEE Avionics, Fiber-Optics and Photonics Technology Conf. (AVFOP), 4–6 Oct. 2011, pp. 15–16.
  34. S.  Assefa, S. B. G.  Lee, C. L.  Schow, W. M. J.  Green, A. V.  Rylyakov, R. A.  John, Y. A.  Vlasov, “20 Gbps receiver based on germanium photodetector hybrid-integrated with 90 nm CMOS amplifier,” in Conf. on Lasers and Electro-Optics (CLEO), 1–6 May 2011, pp. 1–2.
  35. B.  Grot, J.  Hestness, S. W.  Keckler, O.  Mutlu, “Express cube topologies for on-chip interconnects,” in IEEE 15th Int. Symp. on High Performance Computer Architecture (HPCA), 14–18 Feb. 2009, pp. 163–174.
  36. B.  Attia, W.  Chouchene, A.  Zitouni, A.  Nourdin, R.  Tourki, “Design and implementation of low latency network interface for network on chip,” in 5th Int. Design and Test Workshop (IDT), 14–15 Dec. 2010, pp. 37–42.
  37. M.  Simmons, “Ethernet theory of operation,” Microchip Technology Inc., , 2008 [Online]. Available: http://ww1.microchip.com/downloads/en/AppNotes/01120a.pdf .
  38. L.-S.  Peh, W. J.  Dally, “A delay model and speculative architecture for pipelined routers,” in 7th Int. Symp. on High-Performance Computer Architecture (HPCA), 2001, pp. 255–266.
  39. J.  Kim, W. J.  Dally, B.  Towles, A. K.  Gupta, “Microarchitecture of a high-radix router,” Comput. Archit. News, vol.  33, no. 2, pp. 420–431, 2005.
  40. A. L.  Chiu, E. H.  Modiano, “Traffic grooming algorithms for reducing electronic multiplexing costs in WDM ring networks,” J. Lightwave Technol., vol.  18, no. 1, pp. 2–12, Jan. 2000. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited