OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 6, Iss. 2 — Feb. 1, 2014
  • pp: 138–151

Integrated OTN/WDM Switching Architecture Equipped With the Minimum Number of OTN Switches

V. Eramo, M. Listanti, R. Sabella, and F. Testa  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 6, Issue 2, pp. 138-151 (2014)
http://dx.doi.org/10.1364/JOCN.6.000138


View Full Text Article

Enhanced HTML    Acrobat PDF (2203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In packet-optical integrated transport nodes for metropolitan networks, the wavelength data rate of the transponders has increased quickly to 10, 40, and 100 Gbps to reduce the cost of the transported bit. Meanwhile, the majority of the client data rate in routers and packet switches are still operating at 1, 2.5, and 10 Gbps. In this scenario, the introduction of optical transport network (OTN) switching technology enables an efficient wavelength bandwidth utilization and reduces the number of wavelengths, leading to reduced network costs. It has been shown that the use of integrated OTN/WDM switch architecture is cost effective because it reduces the number of short-reach client interfaces. The OTN/WDM also reduces the rack space and the power consumption compared to an architecture that uses a reconfigurable optical add–drop multiplexer and a separate standalone OTN switch or one that uses back-to-back muxponder connections to perform manual grooming. We introduce and investigate the performance of a new integrated OTN/WDN switching architecture in which the number of OTN switches is minimized. We propose an analytical model for the evaluation of the switch-blocking probability when two different OTN switch assignment policies are used. We show how the number of OTN switches can be reduced if a suitable dimensioning procedure is performed and depending on the traffic percentage needing OTN switching. As an example, if traffic is less than 45%, then the new proposed OTN/WDM switching architecture allows for 25% savings in OTN switching resources in the case of a switch with 4 input/output lines, 48 wavelengths, and 12×12 OTN switches.

© 2014 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4253) Fiber optics and optical communications : Networks, circuit-switched
(060.6718) Fiber optics and optical communications : Switching, circuit

ToC Category:
Research Papers

History
Original Manuscript: July 1, 2013
Revised Manuscript: November 27, 2013
Manuscript Accepted: December 1, 2013
Published: January 20, 2014

Citation
V. Eramo, M. Listanti, R. Sabella, and F. Testa, "Integrated OTN/WDM Switching Architecture Equipped With the Minimum Number of OTN Switches," J. Opt. Commun. Netw. 6, 138-151 (2014)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-6-2-138


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “Architecture of optical transport networks,” , 2001.
  2. “Characteristics of optical network hierarchy equipment functional blocks,” , 2004.
  3. “Interfaces for the optical transport network (OTN),” , 2009.
  4. J. Pedro, J. Santos, and R. M. Morais, “Dynamic setup of multi-granular services over next-generation OTN/WDM networks: Blocking versus add/drop port usage,” in Int. Conf. on Transparent Optical Networks, Warwick, UK, 2012.
  5. J. Santos, J. Pedro, P. Monteiro, and J. Pires, “Optimization framework for supporting 40 Gb/s and 100 Gb/s services over heterogeneous optical transport networks,” J. Netw., vol.  7, pp. 783–790, May 2012. [CrossRef]
  6. M. Carroll, J. Roese, and T. Ohara, “The operator’s view of OTN evolution,” IEEE Commun. Mag., vol.  48, no. 9, pp. 46–52, 2010. [CrossRef]
  7. J. Santos, J. Pedro, and J. Pires, “Optimized provisioning of 100-GbE services over OTN based on shared protection with collocated signal regeneration and differential delay compensation,” in Optical Fiber Communication Conf., San Francisco, CA, 2012.
  8. S. Zsigmond, M. Bertolini, G. Kang, and F. Leao, “Optical network transformation: The way to solve bandwidth limitation,” OptoElectronics & Communications Conf., Busan, South Korea, 2012.
  9. G. S. Zervas, M. De Leenheer, L. Sadeghioon, D. Klonidis, Y. Qin, R. Nejabati, D. Simeonidou, C. Develder, B. Dhoedt, and P. Demeester, “Multi-granular optical cross-connect: Design, analysis and demonstration,” J. Opt. Commun. Netw., vol.  1, pp. 69–84, 2009. [CrossRef]
  10. F. Rambach, B. Konrad, L. Dembeck, U. Gebhard, M. Gunkel, M. Quagliotti, L. Serra, and V. Lopez, “A multilayer cost model for metro/core networks,” J. Opt. Commun. Netw., vol.  5, pp. 210–225, 2013. [CrossRef]
  11. V. Eramo, M. Listanti, R. Sabella, and F. Testa, “Definition and performance evaluation of a low-cost/high-capacity scalable integrated OTN/WDM switch,” J. Opt. Commun. Netw., vol.  4, pp. 1033–1045, 2012. [CrossRef]
  12. P. Iovanna, F. Testa, R. Sabella, A. Bianchi, M. Puleri, M. R. Casanova, and A. Germoni, “Packet-optical integration nodes for next generation transport networks,” J. Opt. Commun. Netw., vol.  4, pp. 821–835, 2012. [CrossRef]
  13. S. Melle and V. Vusirikala, “Network planning and architecture analysis of wavelength blocking in optical and digital ROADM networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, Mar. 2007.
  14. A. Deore, O. Turkcu, S. Ahuja, S. J. Hand, and S. Melle, “Total cost of ownership of WDM and switching architectures for next-generation 100 Gb/s networks,” IEEE Commun. Mag., vol.  50, no. 11, pp. 179–187, 2012. [CrossRef]
  15. G. J. Eilenberger, “Integrated electrical/optical switching for future energy efficient packet networks,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011.
  16. G. Zhang, Q. Xiong, and S. Shen, “Novel multi-granularity optical switching node with wavelength management pool resources,” in 4th Asia-Pacific Photonics Conf., Bejing, China, 2009.
  17. F. Naruse, Y. Yamada, H. Hasegawa, and K. Sato, “Evaluations of OXC hardware scale and network resource requirements of different optical path add/drop ratio restriction schemes,” J. Opt. Commun. Netw., vol.  4, pp. B26–B34, 2012. [CrossRef]
  18. Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance,” J. Opt. Commun. Netw., vol.  4, pp. B58–B67, 2012. [CrossRef]
  19. J. Pedro and S. Pato, “Impact of add/drop port utilization flexibility in DWDM networks,” J. Opt. Commun. Netw., vol.  4, pp. B142–B150, 2012. [CrossRef]
  20. A. N. Pinto, R. M. Morais, J. Pedro, and P. Monteiro, “Cost evaluation in optical networks: Node architecture and energy consumption,” in Int. Conf. on Transparent Optical Networks, Warwick, UK, 2012.
  21. G. Shen, Y. Lin, and L. Peng, “How much can colorless, directionless and contentionless (CDC) of ROADM help dynamic lightpath provisioning?” in Optical Fiber Communication Conf., San Francisco, CA, 2012.
  22. J. L. Strand, “Integrated route selection, transponder placement, wavelength, assignment, and restoration in an advanced ROADM architecture,” J. Opt. Commun. Netw., vol.  4, pp. 282–288, 2012. [CrossRef]
  23. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol.  48, no. 7, pp. 40–50, July 2010. [CrossRef]
  24. S. L. Woodward, M. D. Feuer, I. Kim, P. Palacharla, X. Wang, and D. Bihon, “Service velocity: Rapid provisioning strategies in optical ROADM networks,” J. Opt. Commun. Netw., vol.  4, no. 2, pp. 92–98, 2012. [CrossRef]
  25. P. Belotti, K. Kompella, L. Ceuppens, and L. Noronha, “Transport networks at a crossroads, the roles of MPLS and OTN in packet transport networks,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011.
  26. F. A. Kish, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron., vol.  17, pp. 1470–1489, Mar./Apr. 2011. [CrossRef]
  27. D. F. Welch, F. A. Kish, R. Nagarajan, C. H. Joyner, R. P. Schneider, V. G. Dominic, M. L. Mitchell, S. G. Grubb, T. Chiang, D. D. Perkins, and A. C. Nilson, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Lightwave Technol., vol.  24, pp. 4674–4683, 2006. [CrossRef]
  28. S. Melle, “Building agile optical networks,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), San Diego, CA, 2008.
  29. S. Melle and V. Vusirikala, “Analysis of wavelength blocking in large metro core network using optical and digital ROADM transport system,” in 33rd European Conf. and Exhibition on Optical Communication (ECOC), Berlin, Germany, 2007.
  30. NeoPhotonics products [Online]. Available: http://www.santurcorp.com/products/product_130.aspx .
  31. M. M. Hasan, F. Farahmand, J. P. Jue, and J. J. P. C. Rodrigues, “A study of energy-aware traffic grooming in optical networks: Static and dynamic cases,” IEEE Syst. J., vol.  7, no. 1, pp. 161–173 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited