OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 6, Iss. 3 — Mar. 1, 2014
  • pp: 259–269

Dynamic Cooperative Spectrum Sharing and Defragmentation for Elastic Optical Networks

Ioannis Stiakogiannakis, Eleni Palkopoulou, Dimitrios Klonidis, Ori Gerstel, and Ioannis Tomkos  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 6, Issue 3, pp. 259-269 (2014)
http://dx.doi.org/10.1364/JOCN.6.000259


View Full Text Article

Enhanced HTML    Acrobat PDF (559 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Flexible optical networks appear as the most prevalent candidates for next-generation core transport networks. The transition from a fixed to a flexible frequency grid calls for novel spectrum allocation techniques. This work focuses on the notion of dynamic cooperative spectrum sharing and addresses the issue of dynamic cooperative spectrum allocation for flexible optical networks. In order to cope with the dynamicity of the traffic demands, spectrum expansion/contraction (SEC) policies attempt to accommodate incoming requests by means of expanding/contracting the allocations of connections. When spectrum expansion is limited by neighboring connections, appropriate spectrum defragmentation (SD) policies undertake the task of reallocating connections in order to free up the spectrum. In this work, a novel cooperative SEC policy is examined, which takes into consideration the spectrum allocation of neighboring connections. Additionally, a class of cooperative SD policies is proposed, based on the capabilities of current technology. Simulation results from two reference core networks quantify the benefits that can be reaped in terms of blocking rate. Trade-offs with respect to the achieved reduction in blocking rate and the number of reallocated connections during the SD procedure are examined.

© 2014 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4251) Fiber optics and optical communications : Networks, assignment and routing algorithms
(060.4256) Fiber optics and optical communications : Networks, network optimization
(060.4264) Fiber optics and optical communications : Networks, wavelength assignment
(060.4265) Fiber optics and optical communications : Networks, wavelength routing

ToC Category:
Research Papers

History
Original Manuscript: July 16, 2013
Revised Manuscript: November 24, 2013
Manuscript Accepted: January 7, 2014
Published: February 17, 2014

Citation
Ioannis Stiakogiannakis, Eleni Palkopoulou, Dimitrios Klonidis, Ori Gerstel, and Ioannis Tomkos, "Dynamic Cooperative Spectrum Sharing and Defragmentation for Elastic Optical Networks," J. Opt. Commun. Netw. 6, 259-269 (2014)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-6-3-259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “Spectral grids for WDM applications: DWDM frequency grid,” , Feb. 2012.
  2. E. Palkopoulou, M. Angelou, D. Klonidis, K. Christodoulopoulos, A. Klekamp, F. Buchali, E. Varvarigos, and I. Tomkos, “Quantifying spectrum, cost, and energy efficiency in fixed-grid and flex-grid networks [Invited],” J. Opt. Commun. Netw., vol.  4, no. 11, pp. B42–B51, 2012. [CrossRef]
  3. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies,” IEEE Commun. Mag., vol.  47, no. 11, pp. 66–73, Nov. 2009. [CrossRef]
  4. I. Tomkos and D. Klonidis, “Dynamic elastic and scalable photonic infrastructures and network architectures,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), June 2011, pp. 1–4.
  5. K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Routing and spectrum allocation in OFDM-based optical networks with elastic bandwidth allocation,” in IEEE Global Telecommunication Conf. (GLOBECOM), Dec. 2010, pp. 1–6.
  6. K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Spectrally/bitrate flexible optical network planning,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), Sept. 2010, pp. 1–3.
  7. K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos, “Elastic bandwidth allocation in flexible OFDM-based optical networks,” J. Lightwave Technol., vol.  29, no. 9, pp. 1354–1366, 2011. [CrossRef]
  8. Y. Wang, X. Cao, Q. Hu, and Y. Pan, “Towards elastic and fine-granular bandwidth allocation in spectrum-sliced optical networks,” J. Opt. Commun. Netw., vol.  4, no. 11, pp. 906–917, Nov. 2012. [CrossRef]
  9. A. N. Patel, P. N. Ji, J. P. Jue, and T. Wang, “Routing, wavelength assignment, and spectrum allocation algorithms in transparent flexible optical WDM networks,” Opt. Switching Networking, vol.  9, no. 3, pp. 191–204, July 2012.
  10. X. Wan, N. Hua, and X. Zheng, “Dynamic routing and spectrum assignment in spectrum-flexible transparent optical networks,” J. Opt. Commun. Netw., vol.  4, no. 8, pp. 603–613, 2012. [CrossRef]
  11. M. Klinkowski and K. Walkowiak, “Routing and spectrum assignment in spectrum sliced elastic optical path network,” IEEE Commun. Lett., vol.  15, no. 8, pp. 884–886, Aug. 2011. [CrossRef]
  12. Y. Wang, J. Zhang, Y. Zhao, J. Wang, and W. Gu, “Routing and spectrum assignment by means of ant colony optimization in flexible bandwidth networks,” in Nat. Fiber Optic Engineers Conf., 2012, paper NTu2J.3.
  13. Y. Wang and X. Cao, “Multi-granular optical switching: A classified overview for the past and future,” IEEE Commun. Surv. Tutorials, vol.  14, no. 3, pp. 698–713, 2012.
  14. L. Guo, W. Hou, J. Wu, and Y. Li, “Multicast multi-granular grooming based on integrated auxiliary grooming graph in optical networks,” Photon. Netw. Commun., vol.  24, no. 2, pp. 103–117, Oct. 2012.
  15. N. Naas, B. Kantarci, and H. Mouftah, “Design considerations for energy-efficient multi-granular optical networks,” in 9th Int. Conf. on High Capacity Optical Networks and Enabling Technologies (HONET), 2012, pp. 137–141.
  16. K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Dynamic bandwidth allocation in flexible OFDM-based networks,” in Optical Fiber Communication Conf., 2011, paper OTuI5.
  17. K. Christodoulopoulos, I. Tomkos, and E. Varvarigos, “Time-varying spectrum allocation policies and blocking analysis in flexible optical networks,” IEEE J. Sel. Areas Commun., vol.  31, no. 1, pp. 13–25, Jan. 2013. [CrossRef]
  18. M. Klinkowski, M. Ruiz, L. Velasco, D. Careglio, V. Lopez, and J. Comellas, “Elastic spectrum allocation for time-varying traffic in FlexGrid optical networks,” IEEE J. Sel. Areas Commun., vol.  31, no. 1, pp. 26–38, Jan. 2013. [CrossRef]
  19. I. N. Stiakogiannakis and D. I. Kaklamani, “A radio resource management framework for multi-user multi-cell OFDMA networks based on game theory,” Wireless Personal Commun., vol.  69, no. 2, pp. 745–770, Mar. 2013.
  20. K. Liu, “Cognitive radio games,” IEEE Spectrum, vol.  48, no. 4, pp. 40–56, 2011. [CrossRef]
  21. E. Palkopoulou, I. Stiakogiannakis, D. Klonidis, K. Christodoulopoulos, E. Varvarigos, O. Gerstel, and I. Tomkos, “Dynamic cooperative spectrum sharing in elastic networks,” in Optical Fiber Communication Conf., Mar. 2013, paper OTu3A.2.
  22. J. Y. Yen, “Finding the k shortest loopless paths in a network,” Manage. Sci., vol.  17, no. 11, pp. 712–716, Jan. 1971.
  23. A. Patel, P. Ji, J. Jue, and T. Wang, “Defragmentation of transparent flexible optical WDM (FWDM) networks,” in Optical Fiber Communication Conf. and Expo. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2011, pp. 1–3.
  24. W. Ju, S. Huang, Z. Xu, J. Zhang, and W. Gu, “Dynamic adaptive spectrum defragmentation scheme in elastic optical path networks,” in 17th Opto-Electronics and Communications Conf. (OECC), 2012, pp. 20–21.
  25. J. Zhang, Y. Zhao, X. Yu, and J. Zhao, “Priority-based defragmentation scheme in spectrum-efficient optical networks,” in 10th Int. Conf. on Optical Internet (COIN), 2012, pp. 16–17.
  26. R. Wang and B. Mukherjee, “Provisioning in elastic optical networks with non-disruptive defragmentation,” J. Lightwave Technol., vol.  31, no. 15, pp. 2491–2500, 2013. [CrossRef]
  27. O. A. Gerstel, “Flexible use of spectrum and photonic grooming,” in Photonics in Switching, 2010, paper PMD3.
  28. O. Gerstel, M. Jinno, A. Lord, and S. Yoo, “Elastic optical networking: A new dawn for the optical layer?” IEEE Commun. Mag., vol.  50, no. 2, pp. s12–s20, Feb. 2012.
  29. T. Takagi, H. Hasegawa, K.-I. Sato, Y. Sone, A. Hirano, and M. Jinno, “Disruption minimized spectrum defragmentation in elastic optical path networks that adopt distance adaptive modulation,” in 37th European Conf. and Expo. on Optical Communications, 2011, paper Mo.2.K.3.
  30. X. Wang, I. Kim, Q. Zhang, P. Palacharla, and M. Sekiya, “A hitless defragmentation method for self-optimizing flexible grid optical networks,” in European Conf. and Exhibition on Optical Communication, 2012, paper P5.04.
  31. X. Wang, Q. Zhang, I. Kim, P. Palacharla, and M. Sekiya, “Utilization entropy for assessing resource fragmentation in optical networks,” in Optical Fiber Communication Conf., 2012, paper OTh1A.2.
  32. X. Yu, J. Zhang, Y. Zhao, T. Peng, Y. Bai, D. Wang, and X. Lin, “Spectrum compactness based defragmentation in flexible bandwidth optical networks,” in Optical Fiber Communication Conf., 2012, paper JTh2A.35.
  33. F. Cugini, F. Paolucci, G. Meloni, G. Berrettini, M. Secondini, F. Fresi, N. Sambo, L. Poti, and P. Castoldi, “Push-pull defragmentation without traffic disruption in flexible grid optical networks,” J. Lightwave Technol., vol.  31, no. 1, pp. 125–133, Jan. 2013. [CrossRef]
  34. CHRON Project, “Initial network and service control architecture,” , Nov. 2012. [Online]. Available: http://www.ict-chron.eu .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited