OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and O. Gerstel
  • Vol. 6, Iss. 3 — Mar. 1, 2014
  • pp: 282–290

Performance of a Semi-Nyquist NRZ-DQPSK System Employing a Flexible Gain-Switched Multicarrier Transmitter

Vidak Vujicic, Rui Zhou, Prince M. Anandarajah, John O’Carroll, and Liam P. Barry  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 6, Issue 3, pp. 282-290 (2014)
http://dx.doi.org/10.1364/JOCN.6.000282


View Full Text Article

Enhanced HTML    Acrobat PDF (1028 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The authors report on a strongly filtered direct detected non-return-to-zero differential quadrature phase shift keying (NRZ-DQPSK) system, based on a multicarrier transmitter with a tunable free spectral range. Transmission of a 7×21.4Gb/s multichannel NRZ-DQPSK signal over a dispersion compensated optical link (legacy optical infrastructure) on a 15 GHz grid is investigated experimentally and by simulations. Further improvement of the spectral efficiency is demonstrated by simulating the same 7×21.4Gb/s system on a 12.5 GHz grid. Finally, the scalability of the proposed system is investigated by simulating the transmission of a Tb superchannel, composed of a 10-carrier polarization division multiplexed NRZ-DQPSK operating at 28 GBaud on 33 GHz channel spacing, over 320 km standard single-mode fiber.

© 2014 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(140.3520) Lasers and laser optics : Lasers, injection-locked

ToC Category:
Research Papers

History
Original Manuscript: October 21, 2013
Revised Manuscript: January 17, 2014
Manuscript Accepted: January 18, 2014
Published: February 20, 2014

Citation
Vidak Vujicic, Rui Zhou, Prince M. Anandarajah, John O’Carroll, and Liam P. Barry, "Performance of a Semi-Nyquist NRZ-DQPSK System Employing a Flexible Gain-Switched Multicarrier Transmitter," J. Opt. Commun. Netw. 6, 282-290 (2014)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-6-3-282


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Bertran-Pardo, J. Renaudier, G. Charlet, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, “Overlaying 10  Gb/s legacy optical networks with 40 and 100  Gb/s coherent terminals,” J. Lightwave Technol., vol.  30, no. 14, pp. 2367–2375, July 2012. [CrossRef]
  2. A. Bononi, M. Bertolini, P. Serena, and G. Bellotti, “Cross-phase modulation induced by OOK channels on higher-rate DQPSK and coherent QPSK channels,” J. Lightwave Technol., vol.  27, no. 18, pp. 3974–3983, Sept. 2009. [CrossRef]
  3. W. Idler, E. Lach, W. Kuebart, B. Junginger, K. Schuh, A. Klekamp, D. Werner, A. G. Steffan, A. Schippel, M. Schneiders, S. Vorbeck, and R.-P. Braun, “16 × 112  Gb/s NRZ-DQPSK lab experiments and WDM field trial over ultimate metro distances including high PMD fibers,” J. Lightwave Technol., vol.  29, no. 15, pp. 2195–2203, Aug. 2011. [CrossRef]
  4. P. J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, D. A. Fishman, C. R. Doerr, S. Chandrasekhar, L. L. Buhl, T. J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, and Y. Painchaud, “100-Gb/s DQPSK transmission: From laboratory experiments to field trials,” J. Lightwave Technol., vol.  26, no. 20, pp. 3388–3402, Oct. 2008. [CrossRef]
  5. S. Chandrasekhar, X. Liu, D. Kilper, C. R. Doerr, A. H. Gnauck, E. C. Burrows, and L. L. Buhl, “Terabit transmission at 42.7-Gb/s on 50-GHz grid using hybrid RZ-DQPSK and NRZ-DBPSK formats over 16 × 80  km SSMF spans and 4 bandwidth-managed ROADMs,” J. Lightwave Technol., vol.  26, no. 1, pp. 85–90, Jan. 2008. [CrossRef]
  6. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s WDM transmission of polarization multiplexed RZ-DQPSK signals,” J. Lightwave Technol., vol.  26, no. 1, pp. 79–84, Jan. 2008. [CrossRef]
  7. N. Yoshikane and I. Morita, “1.14  bit/s/Hz spectrally efficient 50 × 85.4-Gb/s transmission over 300 km using copolarized RZ-DQPSK signals,” J. Lightwave Technol., vol.  23, no. 1, pp. 108–114, Jan. 2005. [CrossRef]
  8. K. Roberts, M. O’Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol., vol.  27, no. 16, pp. 3546–3559, Aug. 2009. [CrossRef]
  9. C. R. Doerr and L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” in Proc. ECOC, Torino, Italy, 2010, pp. 1–3.
  10. C. R. Doerr, N. K. Fontaine, and L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett., vol.  24, no. 8, pp. 697–699, Apr. 2012. [CrossRef]
  11. R. Nagarajan, J. Rahn, M. Kato, J. Pleumeekers, D. Lambert, V. Lal, H.-S. Tsai, A. Nilsson, A. Dentai, M. Kuntz, R. Malendevich, J. Tang, J. Zhang, T. Butrie, M. Raburn, B. Little, W. Chen, G. Goldfarb, V. Dominic, B. Taylor, M. Reffle, F. Kish, and D. Welch, “10 channel, 45.6  Gb/s per channel, polarization-multiplexed DQPSK, InP receiver photonic integrated circuit,” J. Lightwave Technol., vol.  29, no. 4, pp. 386–395, Feb. 2011. [CrossRef]
  12. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett., vol.  22, no. 15, pp. 1129–1131, Aug. 2010. [CrossRef]
  13. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol., vol.  29, no. 1, pp. 53–61, Jan. 2011. [CrossRef]
  14. Z. Dong, X. Li, J. Yu, and N. Chi, “6 × 144-Gb/s Nyquist-WDM PDM-64QAM generation and transmission on a 12-GHz WDM grid equipped with Nyquist-band pre-equalization,” J. Lightwave Technol., vol.  30, no. 23, pp. 3687–3692, Dec. 2012. [CrossRef]
  15. R. Schmogrow, S. Ben-Ezra, P. C. Schindler, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “Pulse-shaping with digital, electrical, and optical filters—A comparison,” J. Lightwave Technol., vol.  31, no. 15, pp. 2570–2577, Aug. 2013. [CrossRef]
  16. S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Proc. OFC/NFOEC, Los Angeles, CA, 2011, pp. 1–3.
  17. J. Schroder, L. B. Du, M. Morshed, B. J. Eggleton, and A. J. Lowery, “Colorless flexible signal generator for elastic networks and rapid prototyping,” in Proc. OFC/NFOEC, Anaheim, CA, 2013, pp. 1–3.
  18. H.-C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for terabit superchannel transmission,” J. Lightwave Technol., vol.  30, no. 24, pp. 3965–3971, Dec. 2012. [CrossRef]
  19. I. P. Kaminow, T. Li, and A. E. Villner, Optical Fiber Telecommunications Volume VIB: Systems and Networks. Oxford, MA: Academic, 2013, ch. 3.
  20. W.-R. Peng, I. Morita, T. Hidenori, and T. Tsuritani, “7 × 1.12-Tb/s, 200-GHz-spaced, PDM-16QAM transmission over all EDFA 400-km SSMF and 2 ROADMs,” in Proc. OFC/NFOEC, Los Angeles, CA, 2012, pp. 1–3.
  21. K. Igarashi, T. Tsuritani, I. Morita, K. Katoh, and K. Kikuchi, “Frequency stabilization of multiple semiconductor lasers for Nyquist-WDM transmission systems,” in Proc. OFC/NFOEC, Anaheim, CA, 2013, pp. 1–3.
  22. A. D. Ellis and F. C. Garcia Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett., vol.  17, no. 2, pp. 504–506, Feb. 2005. [CrossRef]
  23. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett., vol.  35, no. 19, pp. 3234–3236, Oct. 2010. [CrossRef]
  24. P. M. Anandarajah, R. Zhou, R. Maher, M. D. Gutierrez Pascual, F. Smith, V. Vujicic, and L. P. Barry, “Flexible optical comb source for super channel systems,” in Proc. OFC/NFOEC, Anaheim, CA, 2013, pp. 1–3.
  25. R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. M. Anandarajah, “40  nm wavelength tunable gain-switched optical comb source,” Opt. Express, vol.  19, no. 26, pp. B415–B420, Dec. 2011. [CrossRef]
  26. P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photon. J., vol.  3, no. 1, pp. 112–122, Feb. 2011. [CrossRef]
  27. D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. C. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single-laser 32.5  Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw., vol.  4, no. 10, pp. 715–723, Oct. 2012. [CrossRef]
  28. A. D. Ellis, F. C. G. Gunning, B. Cuenot, T. C. Healy, and E. Pincemin, “Towards 1  TbE using coherent WDM,” in Proc. OECC/ACOFT, Sydney, Australia, 2008, pp. 1–4.
  29. Z. Wang, Y.-K. Huang, E. Ip, P. R. Prucnal, and T. Wang, “Performance investigation of polarization-multiplexed 16-QAM using all-optical OFDM transmission and digital coherent detection,” in Proc. OFS/NFOEC, Los Angeles, CA, 2011, pp. 1–3.
  30. A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate error-free transmission of eight channels at 10  Gb/s using comb generation in a quantum-dash-based mode-locked laser,” IEEE Photon. Technol. Lett., vol.  21, no. 23, pp. 1746–1748, Dec. 2009. [CrossRef]
  31. P. M. Anandarajah, S. Latkowski, C. Browning, R. Zhou, J. O’Carroll, R. Phelan, B. Kelly, J. O’Gorman, and L. P. Barry, “Integrated two-section discrete mode laser,” IEEE Photon. J., vol.  4, no. 6, pp. 2085–2094, Dec. 2012. [CrossRef]
  32. M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron., vol.  13, no. 1, pp. 136–142, Jan./Feb. 2007. [CrossRef]
  33. R. Zhou, P. M. Anandarajah, M. D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” accepted for publication in OFC/NFOEC 2014.
  34. J. Zhao and A. Ellis, “Electronic impairment mitigation in optically multiplexed multicarrier systems,” J. Lightwave Technol., vol.  29, no. 3, pp. 278–290, Feb. 2011. [CrossRef]
  35. G. Bosco, A. Carena, V. Curri, P. Poggiolini, E. Torrengo, and F. Forghieri, “Investigation on the robustness of a Nyquist-WDM terabit superchannel to transmitter and receiver non-idealities,” in Proc. ECOC, Torino, Italy, 2010, pp. 1–3.
  36. R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9 × 138  Gb/s prefiltered PM-8QAM signals over 4000  km of pure silica-core fiber,” J. Lightwave Technol., vol.  29, no. 15, pp. 2310–2318, Aug. 2011. [CrossRef]
  37. 100G CI-BCH-3 eFEC Encoder/Decoder Core and Design Package [Online]. Available: http://www.vitesse.com .
  38. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett., vol.  23, no. 11, pp. 742–744, June 2011. [CrossRef]
  39. W. Shieh and X. Chen, “Information spectral efficiency and launch power density limits due to fiber nonlinearity for coherent optical OFDM systems,” IEEE Photon. J., vol.  3, no. 2, pp. 158–173, Apr. 2011. [CrossRef]
  40. D. Seyringer, “Design and simulation of 128-channel 10  GHz AWG for ultra-dense wavelength division multiplexing,” in Proc. ICTON, Coventry, UK, 2012.
  41. S. Shimizu, G. Cincotti, and N. Wada, “Demonstration and performance investigation of all-optical OFDM systems based on arrayed waveguide gratings,” Opt. Express, vol.  20, no. 26, pp. B525–B534, Dec. 2012. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited