OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: O. Gerstel and P. Iannone
  • Vol. 6, Iss. 4 — Apr. 1, 2014
  • pp: 371–386

Analysis of Laser and Detector Placement in Incoherent MIMO Multimode Fiber Systems

Kumar Appaiah, Sagi Zisman, Abhik Kumar Das, Sriram Vishwanath, and Seth R. Bank  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 6, Issue 4, pp. 371-386 (2014)
http://dx.doi.org/10.1364/JOCN.6.000371


View Full Text Article

Enhanced HTML    Acrobat PDF (1312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Conventional large-core multimode fibers (MMFs) are preferred for use in short to medium haul optical fiber links, owing to their tolerance to misalignment and low deployment costs; however, data rates through MMFs are limited by modal dispersion. Digital signal processing with multiple-input multiple-output (MIMO) techniques has offered promising solutions to overcome the dispersion limitations of MMFs, but the impact of the geometry of laser and detector arrays on the achievable data rate is not established. To this end, we use a field-propagation-based model to gauge the impact the geometry of lasers and detectors can have on the achievable ergodic and outage rates of incoherent MIMO-MMF links. Laser and detector array geometries were investigated using a grid-based method to optimize the positions of lasers and detectors for a 1 km MIMO-MMF link. Simulations reveal that systems with appropriately designed laser/detector geometries could improve the achievable rate over the fiber by more than 200% over random laser/detector arrays. The grid-based search technique, however, is limited due to high computational requirements for fine grids. As an alternative, we developed a suboptimal “greedy” selection approach to design detector geometries, which produces detector geometries that attain more than 90% of the rate obtained with an exhaustive search, while requiring less than 0.2% of the computation. The low computation requirements and high performance of the greedy selection approach also motivate the use of dynamically reconfigurable detector arrays to achieve high data rates with reduced signal processing complexity. Methods are also presented for clustering detector elements to obtain more consolidated segmented detectors with better fill factors, while still offering significant data rate benefits. The achievable ergodic rate using these systems is verified to be close to the link’s ergodic capacity.

© 2014 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Research Papers

History
Original Manuscript: August 1, 2013
Revised Manuscript: December 28, 2013
Manuscript Accepted: January 31, 2014
Published: March 6, 2014

Citation
Kumar Appaiah, Sagi Zisman, Abhik Kumar Das, Sriram Vishwanath, and Seth R. Bank, "Analysis of Laser and Detector Placement in Incoherent MIMO Multimode Fiber Systems," J. Opt. Commun. Netw. 6, 371-386 (2014)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-6-4-371


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Agrawal, Fiber-Optic Communication Systems, vol. 3. New York: Wiley, 1997.
  2. X. Shen, J. Kahn, and M. Horowitz, “Compensation for multimode fiber dispersion by adaptive optics,” Opt. Lett., vol.  30, no. 22, pp. 2985–2987, 2005. [CrossRef]
  3. J. Peeters Weem, P. Kirkpatrick, and J. Verdiell, “Electronic dispersion compensation for 10  gigabit communication links over FDDI legacy multimode fiber,” in Optical Fiber Communication Conf., Anaheim, CA, 2005, paper OFO4.
  4. D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University, 2005.
  5. M. Shemirani, W. Mao, R. Panicker, and J. Kahn, “Principal modes in graded-index multimode fiber in presence of spatial and polarization-mode coupling,” J. Lightwave Technol., vol.  27, no. 10, pp. 1248–1261, 2009. [CrossRef]
  6. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science, vol.  289, no. 5477, pp. 281–283, 2000. [CrossRef]
  7. A. R. Shah, R. C. J. Hsu, A. Tarighat, A. H. Sayed, and B. Jalali, “Coherent optical MIMO (COMIMO),” J. Lightwave Technol., vol.  23, no. 8, pp. 2410–2419, 2005. [CrossRef]
  8. N. Bikhazi, M. Jensen, and A. Anderson, “MIMO signaling over the MMF optical broadcast channel with square-law detection,” IEEE Trans. Commun., vol.  57, no. 3, pp. 614–617, 2009. [CrossRef]
  9. J. Siuzdak, “RF carrier frequency selection for incoherent MIMO transmission over MM fibers,” J. Lightwave Technol., vol.  27, no. 22, pp. 4960–4963, 2009. [CrossRef]
  10. C. Tsekrekos, A. Martinez, F. Huijskens, and A. Koonen, “Mode group diversity multiplexing transceiver design for graded-index multimode fibres,” in 31st European Conf. on Optical Communication (ECOC), vol. 3, Sept.2005, pp. 727–728.
  11. R. Ryf, S. Randel, A. Gnauck, C. Bolle, R. Essiambre, P. Winzer, D. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10  km of three-mode fiber using coherent 6 × 6 MIMO processing,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011, paper PDPB0.
  12. B. Zhu, T. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. Yan, J. Fini, E. Monberg, and F. Dimarcello, “Space-, wavelength-, polarization-division multiplexed transmission of 56  Tb/s over a 76.8  km seven-core fiber,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011, paper PDPB7.
  13. S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. Burrows, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. Monberg, and F. Dimarcello, “WDM/SDM transmission of 10 × 128  Gb/s PDM-QPSK over 2688  km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320  km b/s/Hz,” Opt. Express, vol.  20, no. 2, pp. 706–711, 2012. [CrossRef]
  14. J. Sakaguchi, B. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19 × 100 × 172  Gb/s SDM-WDM-PDM-QPSK signals at 305  Tb/s,” in Nat. Fiber Optic Engineers Conf., Los Angeles, CA, 2012, paper PDP5C-1.
  15. S. Randel, R. Ryf, A. Gnauck, M. Mestre, C. Schmidt, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, and R. Lingle, “Mode-multiplexed 6 × 20  GBd QPSK transmission over 1200  km DGD-compensated few-mode fiber,” in Nat. Fiber Optic Engineers Conf., Los Angeles, CA, 2012, paper PDP5C-5.
  16. E. Ip, N. Bai, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Linares, C. Montero, V. Moreno, X. Prieto, Y. Luo, G.-D. Peng, G. Li, and T. Wang, “6×6 MIMO transmission over 50+25+10  km heterogeneous spans of few-mode fiber with inline erbium-doped fiber amplifier,” in Optical Fiber Communication Conf., Los Angeles, CA, 2012, paper OTu2C-4.
  17. S. Jansen, I. Morita, and H. Tanaka, “10×121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1,000 km of SSMF,” in Optical Fiber Communication Conf., San Diego, CA, 2008, paper PDP2.
  18. S. L. Jansen, I. Morita, and H. Tanaka, “16×52.5-Gb/s, 50-GHz spaced, POLMUX-CO-OFDM transmission over 4,160 km of SSMF enabled by MIMO processing,” in 33rd European Conf. and Exhibition of Optical Communication, 2007, paper PD1.3.
  19. M. Greenberg, M. Nazarathy, and M. Orenstein, “Data parallelization by optical MIMO transmission over multimode fiber with intermodal coupling,” J. Lightwave Technol., vol.  25, no. 6, pp. 1503–1514, 2007. [CrossRef]
  20. K. Balemarthy and S. Ralph, “MIMO processing of multi-mode fiber links,” in 19th Annu. Meeting of the IEEE Lasers and Electro-Optics Society (LEOS), Oct.2006, pp. 639–640.
  21. K. Appaiah, S. Vishwanath, and S. R. Bank, “Advanced modulation and multiple-input multiple-output for multimode fiber links,” IEEE Photon. Technol. Lett., vol.  23, no. 20, pp. 1424–1426, 2011. [CrossRef]
  22. B. Thomsen, “MIMO enabled 40 Gb/s transmission using mode division multiplexing in multimode fiber,” in Optical Fiber Communication Conf. (OFC), 2010, paper OThM6.
  23. S. Schöllmann and W. Rosenkranz, “Experimental equalization of crosstalk in a 2 × 2 MIMO system based on mode group diversity multiplexing in MMF systems @ 10.7 Gb/s,” in 33rd European Conf. and Exibition of Optical Communication (ECOC), 2007, pp. 1–2.
  24. L. Raddatz, I. White, D. Cunningham, and M. Nowell, “An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links,” J. Lightwave Technol., vol.  16, no. 3, pp. 324–331, 1998. [CrossRef]
  25. Y. Wang, Y. Shao, and N. Chi, “Multiple-inputs multiple-outputs combining center launch and ring launch for high-speed transmission in multimode fiber links,” in Future Wireless Networks and Information Systems. Springer, 2012, pp. 353–360.
  26. B. Franz, D. Suikat, R. Dischler, F. Buchali, and H. Buelow, “High speed OFDM data transmission over 5  km GI-multimode fiber using spatial multiplexing with 2 × 4 MIMO processing,” in 36th European Conf. and Exhibition on Optical Communication (ECOC), 2010, pp. 1–3.
  27. C. Tsekrekos, A. Martinez, F. Huijskens, and A. Koonen, “Design considerations for a transparent mode group diversity multiplexing link,” IEEE Photon. Technol. Lett., vol.  18, no. 22, pp. 2359–2361, 2006. [CrossRef]
  28. R. Vaze and H. Ganapathy, “Sub-modularity and antenna selection in MIMO systems,” IEEE Commun. Lett., vol.  16, no. 9, pp. 1446–1449, Sept. 2012. [CrossRef]
  29. G. Herskowitz, H. Kobrinski, and U. Levy, “Optical power distribution in multimode fibers with angular-dependent mode coupling,” J. Lightwave Technol., vol.  1, no. 4, pp. 548–554, 1983. [CrossRef]
  30. D. Keck, “Spatial and temporal power transfer measurements on a low-loss optical waveguide,” Appl. Opt., vol.  13, no. 8, pp. 1882–1888, 1974. [CrossRef]
  31. W. Shieh and I. Djordjevic, OFDM for Optical Communications. Academic, 2009.
  32. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol., vol.  27, no. 3, pp. 189–204, 2009. [CrossRef]
  33. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6 × 56  Gb/s mode-division multiplexed transmission over 33  km few-mode fiber enabled by 6 × 6 MIMO equalization,” Opt. Express, vol.  19, no. 17, pp. 16697–16707, 2011. [CrossRef]
  34. M. Blau and D. M. Marom, “Optimization of spatial aperture-sampled mode multiplexer for a three-mode fiber,” IEEE Photon. Technol. Lett., vol.  24, no. 23, pp. 2101–2104, 2012. [CrossRef]
  35. S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque, “Free-space optical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun., vol.  53, no. 8, pp. 1402–1412, 2005. [CrossRef]
  36. H. Bulow, “Optical-mode demultiplexing by optical MIMO filtering of spatial samples,” IEEE Photon. Technol. Lett., vol.  24, no. 12, pp. 1045–1047, 2012. [CrossRef]
  37. D. Marcuse, Light Transmission Optics. New York: Van Nostrand Reinhold, 1982.
  38. E. Zeeb, B. Moller, C. Reiner, M. Ries, T. Hackbarth, and K. Ebeling, “Planar proton implanted VCSEL’s and fiber-coupled 2-D VCSEL arrays,” IEEE J. Sel. Top. Quantum Electron., vol.  1, no. 2, pp. 616–623, 1995. [CrossRef]
  39. R. A. Panicker, J. M. Kahn, and S. P. Boyd, “Compensation of multimode fiber dispersion using adaptive optics via convex optimization,” J. Lightwave Technol., vol.  26, no. 10, pp. 1295–1303, 2008. [CrossRef]
  40. C. Tsekrekos, M. de Boer, A. Martinez, F. Willems, and A. Koonen, “Temporal stability of a transparent mode group diversity multiplexing link,” IEEE Photon. Technol. Lett., vol.  18, no. 23, pp. 2484–2486, 2006. [CrossRef]
  41. K. Appaiah, S. Vishwanath, and S. R. Bank, “Vector intensity-modulation and channel state feedback for multimode fiber optic links,” IEEE Trans. Commun., vol.  61, no. 7, pp. 2958–2969, 2013. [CrossRef]
  42. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol.  10, no. 6, pp. 585–595, 1999. [CrossRef]
  43. K.-P. Ho and J. M. Kahn, “Mode-dependent loss and gain: Statistics and effect on mode-division multiplexing,” Opt. Express, vol.  19, no. 17, pp. 16612–16635, 2011. [CrossRef]
  44. G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations for maximizing submodular set functions I,” Math. Program., vol.  14, no. 1, pp. 265–294, 1978. [CrossRef]
  45. K. Appaiah, S. Zisman, S. Vishwanath, and S. R. Bank, “Analysis of laser and detector placement in MIMO multimode optical fiber systems,” in IEEE Int. Conf. on Communications (ICC), June 2012, pp. 2972–2976.
  46. U. Feige and J. Vondrak, “Approximation algorithms for allocation problems: Improving the factor of 1-1/e,” in 47th Annu. IEEE Symp. on Foundations of Computer Science (FOCS), 2006, pp. 667–676.
  47. S. Schöllmann, S. Soneff, and W. Rosenkranz, “10.7 Gb/s over 300 m GI-MMF using a 2 × 2 MIMO system based on mode group diversity multiplexing,” in Optical Fiber Communication Conf., Anaheim, CA, 2007, paper OTuL2.
  48. L. Tang and D. Miller, “Metallic nanodevices for chip-scale optical interconnects,” J. Nanophoton., vol.  3, no. 1, 030302, 2009. [CrossRef]
  49. K. Appaiah, R. Salas, S. Vishwanath, and S. R. Bank, “Enhancing data rates in graded-index multimode fibers with offset coupling and multiplexing,” in Optical Fiber Communication Conf., Anaheim, CA, 2013.
  50. P. J. Winzer and G. J. Foschini, “MIMO capacities and outage probabilities in spatially multiplexed optical transport systems,” Opt. Express, vol.  19, no. 17, pp. 16680–16696, 2011. [CrossRef]
  51. P. Winzer and G. J. Foschini, “Outage calculations for spatially multiplexed fiber links,” in Optical Fiber Communication Conf., Los Angeles, CA, 2011, paper OThO5.
  52. A. Goldsmith, Wireless Communications. Cambridge University, 2005.
  53. T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms. MIT, 2001.
  54. S. Schollmann and W. Rosenkranz, “Experimental investigations of mode coupling as limiting effect using mode group diversity multiplexing on GI-MMF,” in European Conf. on Optical Communications (ECOC), 2006, pp. 1–2.
  55. Y. Li, T. Wang, H. Kosaka, S. Kawai, and K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt., vol.  35, no. 35, pp. 6920–6933, 1996. [CrossRef]
  56. R. Ryf, M. A. Mestre, A. Gnauck, S. Randel, C. Schmidt, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, X. Jiang, D. W. Peckham, A. McCurdy, and R. Lingle, “Low-loss mode coupler for mode-multiplexed transmission in few-mode fiber,” in Nat. Fiber Optic Engineers Conf., Los Angeles, CA, 2012, paper PDP5B-5.
  57. N. K. Fontaine, R. Ryf, S. G. Leon-Saval, and J. Bland-Hawthorn, “Evaluation of photonic lanterns for lossless mode-multiplexing,” in European Conf. and Exhibition on Optical Communication, Amsterdam, The Netherlands, 2012, paper Th-2.
  58. L. Windover, J. Simon, S. Rosenau, K. Giboney, G. Flower, L. Mirkarimi, A. Grot, B. Law, C.-K. Lin, A. Tandon, R. Gruhlke, H. Xia, G. Rankin, M. Tan, and D. Dolfi, “Parallel-optical interconnects >100 Gb/s,” J. Lightwave Technol., vol.  22, no. 9, pp. 2055–2063, 2004.
  59. J. Simon, L. Windover, S. Rosenau, K. Giboney, B. Law, G. Flower, L. Mirkarimi, A. Grot, C.-K. Lin, A. Tandon, G. Rankin, R. Gruhlke, and D. Dolfi, “Parallel optical interconnect at 10  Gb/s per channel,” in Proc. of 54th Electronic Components and Technology Conf., vol. 1, 2004, pp. 1016–1023.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited