OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: O. Gerstel and P. Iannone
  • Vol. 6, Iss. 4 — Apr. 1, 2014
  • pp: 408–420

Assessment of an Optical Burst Switched Core Node With a Restricted Number of Simultaneous Active Users Using the Burst Error Loss Rate

Ahmed I. Abd El-Rahman, Sherif I. Rabia, and Hossam M. H. Shalaby  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 6, Issue 4, pp. 408-420 (2014)


View Full Text Article

Enhanced HTML    Acrobat PDF (512 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The technical superiority of spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) systems over traditional wavelength division multiplexing (WDM) systems in optical burst switched (OBS) networks is mainly attributed to the former’s better medium access control (MAC) layer performance. Nevertheless, in order to conduct an accurate comparison, a thorough study of the physical layer performance should be involved, especially because in many cases the physical layer noise would affect the maximum achievable number of simultaneously active users. Hence, in this work, we develop a novel assessment approach that combines both MAC and physical layer capabilities by introducing a new burst error loss rate parameter. In particular, the approach targets cases with limitations on the number of simultaneous active users. Next, as an example of a noisy physical layer, the effect of phase-induced intensity noise on the number of active users in OBS/SAC-OCDMA systems is analyzed. Our analysis shows that this effect introduces a burst error rate (BurstER) in the multiple-access interference cancellation operation (not investigated before). This BurstER is an increasing function of the number of active users and hence would suppress the system MAC layer performance. Finally, assuming an ideal WDM physical layer, we employ the developed approach to present an illustrative performance comparison between OBS/SAC-OCDMA and OBS/WDM systems. The results show that OBS/SAC-OCDMA performance outperforms that of OBS/WDM when the number of tolerated bits in error per burst exceeds a certain value.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4250) Fiber optics and optical communications : Networks

ToC Category:
Research Papers

History
Original Manuscript: August 27, 2013
Revised Manuscript: February 17, 2014
Manuscript Accepted: February 17, 2014
Published: March 31, 2014

Citation
Ahmed I. Abd El-Rahman, Sherif I. Rabia, and Hossam M. H. Shalaby, "Assessment of an Optical Burst Switched Core Node With a Restricted Number of Simultaneous Active Users Using the Burst Error Loss Rate," J. Opt. Commun. Netw. 6, 408-420 (2014)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-6-4-408

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited