OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: O. Gerstel and P. Iannone
  • Vol. 6, Iss. 4 — Apr. 1, 2014
  • pp: 408–420

Assessment of an Optical Burst Switched Core Node With a Restricted Number of Simultaneous Active Users Using the Burst Error Loss Rate

Ahmed I. Abd El-Rahman, Sherif I. Rabia, and Hossam M. H. Shalaby  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 6, Issue 4, pp. 408-420 (2014)


View Full Text Article

Enhanced HTML    Acrobat PDF (512 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The technical superiority of spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) systems over traditional wavelength division multiplexing (WDM) systems in optical burst switched (OBS) networks is mainly attributed to the former’s better medium access control (MAC) layer performance. Nevertheless, in order to conduct an accurate comparison, a thorough study of the physical layer performance should be involved, especially because in many cases the physical layer noise would affect the maximum achievable number of simultaneously active users. Hence, in this work, we develop a novel assessment approach that combines both MAC and physical layer capabilities by introducing a new burst error loss rate parameter. In particular, the approach targets cases with limitations on the number of simultaneous active users. Next, as an example of a noisy physical layer, the effect of phase-induced intensity noise on the number of active users in OBS/SAC-OCDMA systems is analyzed. Our analysis shows that this effect introduces a burst error rate (BurstER) in the multiple-access interference cancellation operation (not investigated before). This BurstER is an increasing function of the number of active users and hence would suppress the system MAC layer performance. Finally, assuming an ideal WDM physical layer, we employ the developed approach to present an illustrative performance comparison between OBS/SAC-OCDMA and OBS/WDM systems. The results show that OBS/SAC-OCDMA performance outperforms that of OBS/WDM when the number of tolerated bits in error per burst exceeds a certain value.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4250) Fiber optics and optical communications : Networks

ToC Category:
Research Papers

History
Original Manuscript: August 27, 2013
Revised Manuscript: February 17, 2014
Manuscript Accepted: February 17, 2014
Published: March 31, 2014

Citation
Ahmed I. Abd El-Rahman, Sherif I. Rabia, and Hossam M. H. Shalaby, "Assessment of an Optical Burst Switched Core Node With a Restricted Number of Simultaneous Active Users Using the Burst Error Loss Rate," J. Opt. Commun. Netw. 6, 408-420 (2014)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-6-4-408


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Qiao and M. Yoo, “Optical burst switching (OBS)—A new paradigm for an optical Internet,” J. High Speed Netw., vol.  8, no. 1, pp. 69–84, Jan. 1999.
  2. T. Battestilli and H. Perros, “An introduction to optical burst switching,” IEEE Commun. Mag., vol.  41, no. 8, pp. S10–S15, Aug. 2003. [CrossRef]
  3. X. Yu, J. Li, X. Cao, Y. Chen, and C. Qiao, “Traffic statistics and performance evaluation in optical burst switched networks,” J. Lightwave Technol., vol.  22, no. 12, pp. 2722–2738, Dec. 2004. [CrossRef]
  4. X. Yu, Y. Chen, and C. Qiao, “Study of traffic statistics of assembled burst traffic in optical burst switched networks,” Proc. SPIE, vol.  4874, pp. 149–159, 2002.
  5. I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson, “Jump-start: A just-in-time signaling architecture for WDM burst-switched networks,” IEEE Commun. Mag., vol.  40, no. 2, pp. 82–89, Feb. 2002. [CrossRef]
  6. J. Y. Wei and J. R. I. McFarland, “Just-in-time signaling for WDM optical burst switching networks,” J. Lightwave Technol., vol.  18, no. 12, pp. 2019–2037, Dec. 2000. [CrossRef]
  7. A. I. A. El-Rahman, S. I. Rabia, and H. M. H. Shalaby, “MAC layer performance enhancement using control packet buffering in optical burst switched networks,” J. Lightwave Technol., vol.  30, no. 11, pp. 1578–1586, June 2012. [CrossRef]
  8. K. Kamakura, O. Kabranov, D. Makrakis, and I. Sasase, “OBS networks using optical code division multiple access techniques,” in IEEE Int. Conf. on Communications (ICC), Paris, France, June 2004, pp. 1725–1729.
  9. M. Y. S. Sowailem, M. H. S. Morsy, and H. M. H. Shalaby, “Employing code domain for contention resolution in optical burst switched networks with detailed performance analysis,” J. Lightwave Technol., vol.  27, no. 23, pp. 5284–5294, Dec. 2009. [CrossRef]
  10. B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” J. Lightwave Technol., vol.  4, no. 11, pp. 1704–1710, Nov. 1986. [CrossRef]
  11. M. M. Rad and J. A. Salehi, “Phase-induced intensity noise in digital incoherent all-optical tapped-delay line systems,” J. Lightwave Technol., vol.  24, no. 8, pp. 3059–3072, Aug. 2006. [CrossRef]
  12. M. Arie and M. Tur, “Phase-induced intensity noise in optical interferometers excited by semiconductor lasers with non-Lorentzian lineshapes,” J. Lightwave Technol., vol.  8, no. 1, pp. 1–6, Jan. 1990. [CrossRef]
  13. E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol.  46, no. 9, pp. 1176–1185, Sept. 1998. [CrossRef]
  14. Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technol., vol.  19, no. 9, pp. 1274–1281, Sept. 2001. [CrossRef]
  15. Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “New code families for fiber-Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” IEEE Photon. Technol. Lett., vol.  13, no. 8, pp. 890–892, Aug. 2001. [CrossRef]
  16. M. Izal, J. Aracil, D. Morat, and E. Magaa, “Delay-throughput curves for timer-based OBS burstifiers with light load,” J. Lightwave Technol., vol.  24, no. 1, pp. 277–285, Jan. 2006. [CrossRef]
  17. D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 3rd ed. Wiley, 1998.
  18. N. Akar, E. Karasan, and K. Dogan, “Wavelength converter sharing in asynchronous optical packet/burst switching: An exact blocking analysis for Markovian arrivals,” IEEE J. Sel. Areas Commun., vol.  24, no. 12, pp. 69–80, Dec. 2006. [CrossRef]
  19. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes. McGraw-Hill, 2002.
  20. L. Kleinrock, Queueing Systems, vol. 1. Wiley, 1975.
  21. R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Coherence coding for photonic code-division multiple access networks,” J. Lightwave Technol., vol.  13, no. 9, pp. 1826–1837, Sept. 1995. [CrossRef]
  22. K. W. Chu and F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Opt. Eng., vol.  30, no. 3, pp. 337–344, May 1991. [CrossRef]
  23. X. Zhou, H. M. H. Shalaby, and C. Lu, “Design and performance analysis of a new code for spectral amplitude coding optical CDMA systems,” in Proc. IEEE Sixth Int. Symp. on Spread Spectrum Techniques and Applications (ISSSTA), Sept. 2000, pp. 174–178.
  24. J. W. Goodman, Statistical Optics. New York: Wiley, 1985.
  25. S. B. Sun and M. S. Leeson, “Spectrum-sliced WDM and incoherent optical CDMA: A performance comparison,” in Ninth Annu. Postgraduate Symp. on the Convergence of Telecommunications, Networking and Broadcasting, Liverpool, UK, June 2008.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited