OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: O. Gerstel and P. Iannone
  • Vol. 6, Iss. 5 — May. 1, 2014
  • pp: 449–458

Systematic Method for Designing Constellations for Intensity-Modulated Optical Systems

Marko Beko and Rui Dinis  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 6, Issue 5, pp. 449-458 (2014)
http://dx.doi.org/10.1364/JOCN.6.000449


View Full Text Article

Enhanced HTML    Acrobat PDF (974 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider the design of compact multisubcarrier constellations for intensity-modulated direct-detected optical systems. The constellations are designed to minimize the average electrical, average optical, and peak optical power for a given minimum distance between constellation points. We formulate the constellation design as a nonconvex optimization problem with second-order cone constraints, (nonconvex) quadratic constraints, and a convex objective function. We show that this problem can be relaxed to a (convex) second-order cone programming (SOCP) problem. We introduce a simple iterative method in which the SOCP relaxation is improved in each iteration. Several numerical simulation examples are provided to illustrate the effectiveness of our method. For the single-subcarrier case, the new constellations are compared with the best known formats in terms of power and spectral efficiency. Our new constellations outperform the corresponding face-centered cubic lattice and quadrature-amplitude-modulation-based constellations, with average electrical and optical power gains in the vicinity of 0.5 dB, for low symbol error rates. The corresponding peak optical power gains are also in the vicinity of 0.5 dB. By studying the mutual information inherent to the new constellations, we show that the potentials are still valid for coded systems. For the two-subcarrier case, we still outperform two-subcarrier schemes based on conventional constellations and optimized single-subcarrier constellations with the same dimensions.

© 2014 Optical Society of America

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Research Papers

History
Original Manuscript: December 24, 2013
Revised Manuscript: February 28, 2014
Manuscript Accepted: March 4, 2014
Published: April 14, 2014

Citation
Marko Beko and Rui Dinis, "Systematic Method for Designing Constellations for Intensity-Modulated Optical Systems," J. Opt. Commun. Netw. 6, 449-458 (2014)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-6-5-449


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Hranilovic, Wireless Optical Communication Systems. New York: Springer, 2005.
  2. J. R. Barry, Wireless Infrared Communications. Norwell, MA: Kluwer Academic, 1994.
  3. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol.  85, no. 2, pp. 265–298, 1997. [CrossRef]
  4. S. Hranilovic and F. R. Kschischang, “Capacity bounds for power- and band-limited optical intensity channels corrupted by Gaussian noise,” IEEE Trans. Inf. Theory, vol.  50, no. 5, pp. 784–795, 2004. [CrossRef]
  5. S. Hranilovic and F. R. Kschischang, “Optical intensity-modulated direct detection channels: Signal space and lattice codes,” IEEE Trans. Inf. Theory, vol.  49, no. 6, pp. 1385–1399, 2003. [CrossRef]
  6. A. A. Farid and S. Hranilovic, “Capacity bounds for wireless optical intensity channels with Gaussian noise,” IEEE Trans. Inf. Theory, vol.  56, no. 12, pp. 6066–6077, 2010. [CrossRef]
  7. A. Lapidoth, S. M. Moser, and M. A. Wigger, “On the capacity of free-space optical intensity channels,” IEEE Trans. Inf. Theory, vol.  55, no. 10, pp. 4449–4461, Oct. 2009. [CrossRef]
  8. J. Karout, E. Agrell, K. Szczerba, and M. Karlsson, “Optimizing constellations for single-subcarrier intensity-modulated optical systems,” IEEE Trans. Inf. Theory, vol.  58, no. 7, pp. 4645–4659, July 2012. [CrossRef]
  9. Q. Gao, J. H. Manton, G. Chen, and Y. Hua, “Constellation design for a multicarrier optical wireless communication channel,” IEEE Trans. Commun., vol.  62, no. 1, pp. 214–225, Jan. 2014. [CrossRef]
  10. S. Randel, F. Breyer, and S. C. J. Lee, “High-speed transmission over multimode optical fibers,” in Proc. Optical Fiber Communication Conf., San Diego, CA, Feb.24–28, 2008.
  11. D. Molin, G. Kuyt, M. Bigot-Astruc, and P. Sillard, “Recent advances in MMF technology for data networks,” in Proc. Optical Fiber Communication Conf., Los Angeles, CA, Mar.6–10, 2011, paper OWJ6.
  12. K.-P. Ho, Phase-Modulated Optical Communication Systems. New York: Springer, 2005.
  13. S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10  Gb/s lightwave systems,” J. Lightwave Technol., vol.  17, no. 11, pp. 2235–2248, 1999. [CrossRef]
  14. T. Ohtsuki, “Multiple-subcarrier modulation in optical wireless communications,” IEEE Commun. Mag., vol.  41, no. 3, pp. 74–79, Mar. 2003. [CrossRef]
  15. L. P. Chen and K. Y. Lau, “Regime where zero-bias is the low power solution for digitally modulated laser diodes,” IEEE Photon. Technol. Lett., vol.  8, no. 2, pp. 185–187, 1996. [CrossRef]
  16. B. Inan, S. C. J. Lee, S. Randel, I. Neokosmidis, A. M. J. Koonen, and J. W. Walewski, “Impact of LED nonlinearity on discrete multitone modulation,” J. Opt. Commun. Netw., vol.  1, no. 5, pp. 439–451, Oct. 2009. [CrossRef]
  17. C. Kanzow, I. Ferenczi, and M. Fukushima, “On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity,” SIAM J. Optim., vol.  20, no. 1, pp. 297–320, 2009. [CrossRef]
  18. L. W. Zhang, J. Gu, and X. T. Xiao, “A class of nonlinear Lagrangians for nonconvex second order cone programming,” Comput. Optim. Appl., vol.  49, no. 1, pp. 61–99, May 2011. [CrossRef]
  19. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge University, 2004.
  20. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 1.21,” Apr. 2010 [Online]. Available: http://cvxr.com/cvx .
  21. P. S. Bradley and O. L. Mangasarian, “Feature selection via concave minimization and support vector machines,” in Proc. Int. Conf. on Machine Learning, Madison, WI, July24–27, 1998, pp. 82–90.
  22. R. Collobert, F. Sinz, J. Weston, and L. Bottou, “Large scale transductive SVMs,” J. Mach. Learn. Res., vol.  7, pp. 1687–1712, 2006.
  23. M. Beko and R. Dinis, “Designing good multi-dimensional constellations,” IEEE Wireless Commun. Lett., vol.  1, no. 3, pp. 221–224, 2012. [CrossRef]
  24. M. Beko, “Efficient beamforming in cognitive radio multicast transmission,” IEEE Trans. Wireless Commun., vol.  11, no. 11, pp. 4108–4117, 2012. [CrossRef]
  25. H. Yoon and J. C. Ye, “Motion estimation/compensated compressed sensing using patch-based low rank penalty,” Proc. SPIE, vol.  8858, 88581Y, Sept. 2013. [CrossRef]
  26. K. S. Kim, Y. D. Son, Z. H. Cho, J. B. Ra, and J. C. Ye, “Globally convergent 3D dynamic PET reconstruction with patch-based non-convex low rank regularization,” in Proc. IEEE Int. Symp. on Biomedical Imaging, San Francisco, CA, Apr.7–11, 2013, pp. 1158–1161.
  27. B. K. Sriperumbudur and G. R. G. Lanckriet, “On the convergence of the concave-convex procedure,” in Advances in Neural Information Processing Systems 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, Eds., 2009, pp. 1759–1767.
  28. I. Pólik and T. Terlaky, “Interior point methods for nonlinear optimization,” in Nonlinear Optimization, G. Di Pillo and F. Schoen, Eds., 1st ed. Heidelberg, Germany: Springer, 2010, ch. 4.
  29. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd ed. New York: Springer-Verlag, 1999, p. 21.
  30. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol., vol.  28, no. 4, pp. 662–701, Feb. 2010. [CrossRef]
  31. M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques: Signal Design and Detection. Englewood Cliffs, NJ: Prentice-Hall, 1995.
  32. J. Karout, E. Agrell, and M. Karlsson, “Power efficient subcarrier modulation for intensity modulated channels,” Opt. Express, vol.  18, no. 17, pp. 17913–17921, Aug. 2010. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited