OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: O. Gerstel and P. Iannone
  • Vol. 6, Iss. 5 — May. 1, 2014
  • pp: 486–500

Design and Analysis of a Frame-Based Dynamic Bandwidth Allocation Scheme for Fiber-Wireless Broadband Access Networks

Chia-Lin Lai, Hui-Tang Lin, Hung-Hsin Chiang, and Yu-Chih Huang  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 6, Issue 5, pp. 486-500 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1214 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The integration of Ethernet passive optical networks (EPONs) and broadband wireless access (BWA) networks, such as LTE and WiMAX, provides a promising solution for fixed mobile convergence architectures. The complementary features of these two network systems provide high bandwidth and mobility together with a low deployment cost. However, even though many hardware architectures have been proposed for integrated EPON/BWA networks, the problem of achieving an effective bandwidth division among the EPON and wireless traffic remains unresolved. Accordingly, the present study proposes a novel frame-based dynamic bandwidth allocation (FB-DBA) scheme to accommodate the different protocols of EPON and BWA networks, respectively, in an efficient manner. The proposed scheme adopts a framed approach, in which the time domains of the optical and wireless access networks are partitioned into contiguous frames of a fixed length. Within each frame, wireless traffic is transmitted in a pipeline fashion between the optical and wireless domains, which significantly reduces the delay of wireless traffic. Furthermore, sufficient network resources are provided to ensure the respective quality-of-service requirements of the EPON and wireless traffic. The performance of the proposed FB-DBA scheme is evaluated by means of a series of simulations based on an N-user M/G/1 queuing model. The numerical results confirm the efficiency and effectiveness of the proposed scheme.

© 2014 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Research Papers

Original Manuscript: October 3, 2013
Revised Manuscript: February 17, 2014
Manuscript Accepted: February 19, 2014
Published: April 18, 2014

Chia-Lin Lai, Hui-Tang Lin, Hung-Hsin Chiang, and Yu-Chih Huang, "Design and Analysis of a Frame-Based Dynamic Bandwidth Allocation Scheme for Fiber-Wireless Broadband Access Networks," J. Opt. Commun. Netw. 6, 486-500 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Shen, R. S. Tuchker, and C.-J. Chae, “Fixed mobile convergence architecture for broadband access: Integration of EPON and WiMAX,” IEEE Commun. Mag., vol.  45, no. 8, pp. 44–50, Aug. 2007. [CrossRef]
  2. B. Jung, J. Y. Choi, Y.-T. Han, M.-G. Kim, and M. Kang, “Centralized scheduling mechanism for enhanced end-to-end delay and QoS support in integrated architecture of EPON and WiMAX,” IEEE J. Lightwave Technol., vol.  28, no. 16, pp. 2277–2288, Aug. 2010. [CrossRef]
  3. K. Yang, S. Ou, K. H. Guild, and H.-H. Chen, “Convergence of Ethernet PON and IEEE 802.16 broadband access networks and its QoS-aware dynamic bandwidth allocation scheme,” IEEE J. Sel. Areas Commun., vol.  27, no. 2, pp. 101–116, Feb. 2009. [CrossRef]
  4. H.-T. Lin, Y.-Y. Lin, W.-R. Chang, and S.-M. Chen, “Intra-ONU bandwidth allocation games in integrated EPON/WiMAX networks,” J. Opt. Commun. Netw., vol.  5, no. 6, pp. 609–620, June 2013. [CrossRef]
  5. S. Sarkar, H.-H. Yen, S. Dixit, and B. Mukherjee, “A novel delay-aware routing algorithm (DARA) for a hybrid wireless-optical broadband access network (WOBAN),” IEEE Netw., vol.  2, no. 3, pp. 20–28, May/June 2008.
  6. N. Ghazisaidi and M. Maier, “Fiber-wireless (FiWi) access networks: Challenges and opportunities,” IEEE Netw., vol.  25, no. 1, pp. 36–42, Jan.–Feb. 2011.
  7. N. Ghazisaidi and M. Maier, “Hierarchical frame aggregation techniques for hybrid fiber-wireless access networks,” IEEE Commun. Mag., vol.  49, no. 9, pp. 64–73, Sept. 2011. [CrossRef]
  8. P. Chowdhury, M. Tornatore, S. Sarkar, and B. Mukherjee, “Building a green wireless-optical broadband access network (WOBAN),” J. Lightwave Technol., vol.  28, no. 16, pp. 2219–2229, Aug. 2010. [CrossRef]
  9. X. Liu, N. Ghazisaidi, L. Ivanescu, R. Kang, and M. Maier, “On the tradeoff between energy saving and QoS support for video delivery in EEE-based FiWi networks using real-world traffic traces,” J. Lightwave Technol., vol.  29, no. 18, pp. 2670–2676, Sept. 2011. [CrossRef]
  10. K. Togashi, H. Nishiyama, N. Kato, H. Ujikawa, K.-I. Suzuki, and N. Yoshimoto, “Cross layer analysis on ONU energy consumption in smart FiWi networks,” IEEE Wirel. Commun. Lett., vol.  2, no. 6, pp. 695–698, Dec. 2013. [CrossRef]
  11. B. Kantarci and H. T. Mouftah, “Energy efficiency in the extended-reach fiber-wireless access networks,” IEEE Netw., vol.  26, no. 2, pp. 28–35, Mar.–Apr. 2012.
  12. A. Barradas, N. Correia, J. Coimbra, and G. Schutz, “Load adaptive and fault tolerant framework for energy saving in fiber wireless access networks,” J. Opt. Commun. Netw., vol.  5, no. 9, pp. 957–967, Sept. 2013. [CrossRef]
  13. G. Schutz and N. Correia, “Design of QoS-aware energy-efficient fiber-wireless access networks,” J. Opt. Commun. Netw., vol.  4, no. 8, pp. 586–594, Aug. 2012. [CrossRef]
  14. A. R. Dhaini, P.-H. Ho, and X. Jiang, “QoS control for guaranteed service bundles over fiber-wireless (Fi-Wi) broadband access networks,” J. Lightwave Technol., vol.  29, no. 10, pp. 1500–1513, May 2011. [CrossRef]
  15. H.-T. Lin, C.-L. Lai, and Y.-C. Huang, “Dynamic bandwidth allocation with QoS support for integrated EPON/WiMAX networks,” in Proc. of IEEE High Performance Switching and Routing (HPSR), July 2013, pp. 8–11.
  16. IEEE Standard 802.16 Working Group, IEEE 802.16e-2005 Standard for Local, and Metropolitan Area Networks: Air interface for fixed broadband wireless access systems-amendment for physical, and medium access control layers for combined fixed, and mobile operation in licensed bands, Dec. 2005.
  17. S. Sesia, I. Toufik, and M. Baker, LTE—The UMTS Long Term Evolution, From Theory to Practice. Wiley, 2009.
  18. 3GPP , “UTRA-UTRAN long term evolution (LTE) and 3GPP system architecture evolution (SAE)”, 2010 [Online]. Available: http://www.3gpp.org/article/lte .
  19. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” , Dec. 1998.
  20. C. Cicconetti, A. Erta, L. Lenzini, and E. Mingozzi, “Performance evaluation of the IEEE 802.16 MAC for QoS support,” IEEE Trans. Mob. Comput., vol.  6, no. 1, pp. 26–38, Jan. 2007. [CrossRef]
  21. IEEE 802.3ah Ethernet in the First Mile Task Force [Online]. Available: http://www.ieee802.org/3/efm/ .
  22. C. M. Assi, Y. Ye, S. Dixit, and M. A. Ali, “Dynamic bandwidth allocation for quality-of-service over Ethernet PONs,” IEEE J. Sel. Areas Commun., vol.  21, no. 9, pp. 1467–1477, Nov. 2003. [CrossRef]
  23. C. Assi, M. Maier, and A. Shami, “Toward quality-of-service protection in Ethernet passive optical networks: Challenges and solutions,” IEEE Netw., vol.  21, no. 5, pp. 12–19, Sept.–Oct. 2007. [CrossRef]
  24. G. Kramer, B. Mukherjee, S. Dixit, Y. Ye, and R. Hirth, “On supporting differentiated classes of service in EPON-based access networks,” J. Opt. Netw., vol.  1, no. 9, pp. 280–298, Aug. 2002.
  25. J. Xie, S. Jiang, and Y. Jiang, “A dynamic bandwidth allocation scheme for differentiated services in EPONs,” IEEE Commun. Mag., vol.  42, no. 8, pp. S32–S39, Aug. 2009.
  26. H. Shimonishi, I. Maki, T. Murase, and M. Murata, “Dynamic fair bandwidth allocation for Diffserv classes,” in Proc. of IEEE Int. Conf. on Communications (ICC), Apr. 2002, pp. 2348–2352.
  27. H. Naser and H. T. Nouftah, “A joint-ONU interval-based dynamic scheduling algorithm for Ethernet passive optical networks,” IEEE/ACM Trans. Netw., vol.  14, no. 4, pp. 889–899, Aug. 2006. [CrossRef]
  28. R. Sherif, A. Hadjiantonis, G. Ellinas, C. Assi, and M. A. Ali, “A novel decentralized Ethernet-based PON access architecture for provisioning differentiated QoS,” J. Lightwave Technol., vol.  22, no. 11, pp. 2483–2497, Nov. 2004. [CrossRef]
  29. Y. Zhu, M. Ma, and T. H. Cheng, “Differentiated services supported by bandwidth guarantee polling (BGP) scheme in Ethernet passive optical networks,” in Proc. of IEEE Int. Conf. on Communications Systems (ICCS), Sept. 2004, pp. 371–375.
  30. D. P. Bertsekas and R. G. Gallager, Data Network, 2nd ed. Englewood Cliffs, NJ, Prentice-Hall, 1992.
  31. S. Bhatia, D. Garbuzov, and R. Bartos, “Analysis of the gated IPACT scheme for EPONs,” in Proc. of IEEE Int. Conf. on Communications (ICC), June 2006, pp. 2693–2698.
  32. B. Lannoo, L. Verslegers, D. Colle, M. Pickavet, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm for EPONs,” J. Opt. Netw., vol.  6, no. 6, pp. 677–688, June 2007. [CrossRef]
  33. S. Bharati and P. Saengudomlert, “Analysis of mean packet delay for dynamic bandwidth allocation algorithms in EPONs,” IEEE J. Lightwave Technol., vol.  28, no. 23, pp. 3454–3462, Dec. 2010. [CrossRef]
  34. A. R. Dhaini, C. M. Assi, M. Maier, and A. Shami, “Per-stream QoS and admission control in Ethernet passive optical networks (EPONs),” J. Lightwave Technol., vol.  25, no. 7, pp. 1659–1669, July 2007. [CrossRef]
  35. W. Willinger, M. S. Taqqu, and A. Erramilli, “A bibliographical guide to self-similar traffic and performance modeling for modem high-speed networks,” in Stochastic Networks. Oxford, UK: Oxford University, 1996, pp. 339–366.
  36. B. Skubic, J. Chen, J. Ahmed, L. Wosinska, and B. Mukherjee, “A comparison of dynamic bandwidth allocation for EPON, GPON, and next-generation TDM PON,” IEEE Commun. Mag., vol.  47, no. 3, pp. S40–S48, March 2009. [CrossRef]
  37. H. Ikeda and K. Kitayama, “Dynamic bandwidth allocation with adaptive polling cycle for maximized TCP throughput in 10G-EPON,” J. Lightwave Technol., vol.  27, no. 23, pp. 5508–5516, Dec. 2009. [CrossRef]
  38. A. R. Dhaini and P.-H. Ho, “MC-FiWiBAN: An emergency-aware mission-critical fiber-wireless broadband access network,” IEEE Commun. Mag., vol.  49, no. 1, pp. 134–142, Jan. 2011. [CrossRef]
  39. S. Thota, P. Bhaumik, P. Chowdhury, B. Mukherjee, and S. Sarkar, “Exploiting wireless connectivity for robustness in WOBAN,” IEEE Netw., vol.  27, no. 4, pp. 72–79, July–Aug. 2013. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited