OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: O. Gerstel and P. Iannone
  • Vol. 6, Iss. 7 — Jul. 1, 2014
  • pp: 590–600

Sliceable Transponder Architecture Including Multiwavelength Source

Nicola Sambo, Antonio D’Errico, Claudio Porzi, Valeria Vercesi, Muhammad Imran, Filippo Cugini, Antonella Bogoni, Luca Potì, and Piero Castoldi  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 6, Issue 7, pp. 590-600 (2014)
http://dx.doi.org/10.1364/JOCN.6.000590


View Full Text Article

Enhanced HTML    Acrobat PDF (960 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multiflow transponder in flex-grid optical networks has recently been proposed as a transponder solution to generate multiple optical flows (or subcarriers). Multiflow transponders support high-rate super-channels (i.e., connection composed of multiple corouted subcarriers contiguous in the spectrum) and sliceability; i.e., flows can be flexibly associated to the incoming traffic requests, and, besides composing a super-channel, they can be directed toward different destinations. Transponders supporting sliceability are also called sliceable transponders or sliceable bandwidth variable transponders (SBVTs). Typically, in the literature, SBVTs have been considered composed of multiple laser sources (i.e., one for each subcarrier). In this paper, we propose and evaluate a novel multirate, multimodulation, and code-rate adaptive SBVT architecture. Subcarriers are obtained either through multiple laser sources (i.e., a laser for each subcarrier) or by exploiting a more innovative and cost-effective solution based on a multiwavelength source and micro-ring resonators (MRRs). A multiwavelength source is able to create several optical subcarriers from a single laser source. Then, cascaded MRRs are used to select subcarriers and direct them to the proper modulator. MRRs are designed and analyzed through simulations in this paper. An advanced transmission technique such as time frequency packing is also included. A specific implementation of a SBVT enabling an information rate of 400 Gb / s is presented considering standard 100 GbE interfaces. A node architecture supporting SBVT is also considered. A simulation analysis is carried out in a flex-grid network. The proposed SBVT architecture with a multiwavelength source permits us to reduce the number of required lasers in the network.

© 2014 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications
(060.4253) Fiber optics and optical communications : Networks, circuit-switched

ToC Category:
Research Papers

History
Original Manuscript: September 10, 2013
Revised Manuscript: March 24, 2014
Manuscript Accepted: April 30, 2014
Published: June 11, 2014

Citation
Nicola Sambo, Antonio D’Errico, Claudio Porzi, Valeria Vercesi, Muhammad Imran, Filippo Cugini, Antonella Bogoni, Luca Potì, and Piero Castoldi, "Sliceable Transponder Architecture Including Multiwavelength Source," J. Opt. Commun. Netw. 6, 590-600 (2014)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-6-7-590


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Commun. Mag., vol.  48, no. 8, pp. 138–145, Aug. 2010. [CrossRef]
  2. O. Gerstel, M. Jinno, A. Lord, and S. Yoo, “Elastic optical networking: A new dawn for the optical layer?” IEEE Commun. Mag., vol.  50, no. 2, pp. s12–s20, Feb. 2012. [CrossRef]
  3. N. Sambo, P. Castoldi, F. Cugini, G. Bottari, and P. Iovanna, “Toward high-rate and flexible optical networks,” IEEE Commun. Mag., vol.  50, no. 5, pp. 66–72, May 2012. [CrossRef]
  4. A. Hirano, H.-J. Schmidtke, and L. Velasco, “Will flexgrid networks be worth the investment for just 30% improvement?” presented at OFC Workshop, 2013, session number OSu1F.
  5. Draft revised G.694.1 version 1.3, Unpublished ITU-T Study Group 15, Question 6.
  6. G. Zervas, M. De Leenheer, L. Sadeghioon, D. Klonidis, Y. Qin, R. Nejabati, D. Simeonidou, C. Develder, B. Dhoedt, and P. Demeester, “Multi-granular optical cross-connect: Design, analysis, and demonstration,” J. Opt. Commun. Netw., vol.  1, no. 1, pp. 69–84, 2009. [CrossRef]
  7. H. Takara, T. Goh, K. Shibahara, K. Yonenaga, S. Kawai, and M. Jinno, “Experimental demonstration of 400  Gb/s multi-flow, multi-rate, multi-reach optical transmitter for efficient elastic spectral routing,” in 37th European Conf. and Exhibition on Optical Communication (ECOC), 2011.
  8. F. Cugini, F. Paolucci, N. Sambo, L. Pot, A. D’Errico, and G. Bottari, “Reliable flexible-ROADM architecture enabling modulation format adaptation,” in 38th European Conf. and Exhibition on Optical Communication (ECOC), 2012.
  9. F. Cugini, G. Meloni, F. Paolucci, N. Sambo, M. Secondini, L. Gerardi, L. Pot, and P. Castoldi, “Demonstration of flexible optical network based on path computation element,” J. Lightwave Technol., vol.  30, no. 5, pp. 727–733, Mar. 2012. [CrossRef]
  10. X. Cai, K. Wen, R. Proietti, Y. Yin, R. Scott, C. Qin, and S. J. B. Yoo, “Experimental demonstration of adaptive combinational QoT failure restoration in flexible bandwidth networks,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2012.
  11. L. Liu, H. Y. Choi, R. Casellas, T. Tsuritani, I. Morita, R. Martinez, and R. Munoz, “Demonstration of a dynamic transparent optical network employing flexible transmitters/receivers controlled by an OpenFlow-stateless PCE integrated control plane [invited],” J. Opt. Commun. Netw., vol.  5, no. 10, pp. A66–A75, 2013. [CrossRef]
  12. M. Jinno, H. Takara, Y. Sone, K. Yonenaga, and A. Hirano, “Multiflow optical transponder for efficient multilayer optical networking,” IEEE Commun. Mag., vol.  50, no. 5, pp. 56–65, 2012. [CrossRef]
  13. T. Ohara, M. Teshima, S. Aisawa, and M. Jinno, “OTN technology for multi-flow optical transponder in elastic 400G/1T transmission era,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2012.
  14. P. Anandarajah, R. Zhou, R. Maher, M. Gutierrez Pascual, F. Smyth, V. Vujicic, and L. Barry, “Flexible optical comb source for super channel systems,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2013.
  15. A. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Flexible RF-based comb generator,” IEEE Photon. Technol. Lett., vol.  25, no. 7, pp. 701–704, 2013. [CrossRef]
  16. A. Metcalf, V. Torres-Company, D. Leaird, and A. Weiner, “Stand-alone high-power broadly tunable optoelectronic frequency comb generator,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2013.
  17. A. Barbieri, D. Fertonani, and G. Colavolpe, “Time-frequency packing for linear modulations: Spectral efficiency and practical detection schemes,” IEEE Trans. Commun., vol.  57, no. 10, pp. 2951–2959, 2009. [CrossRef]
  18. M. Rasras, K.-Y. Tu, D. M. Gill, Y.-k. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol., vol.  27, no. 12, pp. 2105–2110, 2009. [CrossRef]
  19. L. Pot, G. Meloni, G. Berrettini, F. Fresi, M. Secondini, T. Foggi, G. Colavolpe, E. Forestieri, A. D’Errico, F. Cavaliere, R. Sabella, and G. Prati, “Casting 1  Tb/s DP-QPSK communication into 200  GHz bandwidth,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), Sept. 2012.
  20. N. Sambo, F. Paolucci, F. Cugini, M. Secondini, L. Pot, G. Berrettini, G. Meloni, F. Fresi, G. Bottari, and P. Castoldi, “Software defined code-rate-adaptive terabit/s based on time-frequency packing,” in Proc. Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), Mar. 2013.
  21. N. Sambo, G. Meloni, G. Berrettini, F. Paolucci, A. Malacarne, A. Bogoni, F. Cugini, L. Poti, and P. Castoldi, “Demonstration of data and control plane for optical multicast at 100 and 200  Gb/s with and without frequency conversion,” J. Opt. Commun. Netw., vol.  5, no. 7, pp. 667–676, 2013. [CrossRef]
  22. P. Ghelfi, F. Cugini, L. Poti, A. Bogoni, P. Castoldi, R. di Muro, and B. Nayar, “Optical cross connects architecture with per-node add and drop functionality,” in Optical Fiber Communication and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2007.
  23. P. Roorda and B. Collings, “Evolution to colorless and directionless ROADM architectures,” in Optical Fiber Communication Conf. and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2008.
  24. www.finisar.com/products/wss-roadms .
  25. “IEEE P802.3ba 40 Gb/s and 100 Gb/s Ethernet Task Force,” http://www.ieee802.org/3/ba/ .
  26. V. Ataie, B.-P. Kuo, E. Myslivets, and S. Radic, “Generation of 1500-tone, 120  nm-wide ultraflat frequency comb by single CW source,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2013.
  27. E. Marchena, T. Creazzo, S. Krasulick, P. Yu, D. Van Orden, J. Spann, C. Blivin, J. Dallesasse, P. Varangis, R. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conf. and Exposition and the Nat. Fiber Optic Engineers Conf. (OFC/NFOEC), 2013.
  28. F. Cugini, F. Paolucci, G. Meloni, G. Berrettini, M. Secondini, F. Fresi, N. Sambo, L. Poti, and P. Castoldi, “Push-pull defragmentation without traffic disruption in flexible grid optical networks,” J. Lightwave Technol., vol.  31, no. 1, pp. 125–133, Jan. 2013. [CrossRef]
  29. L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol.  20, no. 2, pp. 284–287, 1974.
  30. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for onchip optical interconnects,” Opt. Express, vol.  15, no. 19, pp. 11934–11941, 2007. [CrossRef]
  31. J. Pozo, W. Westerveld, P. J. Harmsma, S. Yang, P. Bodis, R. Nieuwland, M. Lagioia, D. M. R. L. Cascio, J. Staats, R. Schmits, H. V. D. Berg, E. Tabak, K. Green, H. P. Urbach, L. K. Cheng, and M. Yousefi, “Silicon on insulator photonic integrated sensors: On-chip sensing and interrogation,” in 13th Int. Conf. on Transparent Optical Networks (ICTON), 2011.
  32. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett., vol.  14, no. 4, pp. 483–485, 2002. [CrossRef]
  33. http://www.epixfab.eu/ .
  34. R. Amatya, C. Holzwarth, M. Popovic, F. Gan, H. Smith, F. Kartner, and R. Ram, “Low power thermal tuning of second-order microring resonators,” in Conf. on Lasers and Electro-Optics (CLEO), 2007.
  35. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Express, vol.  32, no. 22, pp. 3361–3363, 2007.
  36. N. Sambo, F. Cugini, G. Bottari, G. Bruno, P. Iovanna, and P. Castoldi, “Lightpath provisioning in wavelength switched optical networks with flexible grid,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), Sept. 2011.
  37. N. Sambo, F. Cugini, P. Bottari, G. Iovanna, and P. Castoldi, “Routing and spectrum assignment for super-channels in flex-grid optical networks,” in Proc. European Conf. and Exhibition on Optical Communication (ECOC), Sept. 2012.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited