OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: O. Gerstel and P. Iannone
  • Vol. 6, Iss. 7 — Jul. 1, 2014
  • pp: 610–618

40  Gbit/s Pulsed RZ-BPSK Transmission With a 40  GHz Self-Pulsated Distributed Feedback Laser Diode Mach–Zehnder Intensity Modulator Link

Yu-Chieh Chi, Huai-Yung Wang, Chih-Hsien Cheng, and Gong-Ru Lin  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 6, Issue 7, pp. 610-618 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1101 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A self-starting pulsed encoding of a Mach–Zehnder intensity modulator (MZM) is demonstrated to generate a 40Gbit/s return-to-zero binary phase-shifted-keying (RZ-BPSK) data stream by using the optoelectronic feedback loop. By driving the MZM with an optoelectronic oscillator, both the electrical clock and the optical pulse train at 40 GHz can be extracted to deliver and trigger the synthesizer-free 40Gbit/s RZ-BPSK data. The pulsed RZ carrier with a pulsewidth of 10.5 ps provides a jitter as low as 150 fs and an extinction ratio as high as 7.8 dB, which is particularly suitable for the RZ-BPSK transmission at 40Gbit/s. The back-to-back transmitted synthesizer-free 40Gbit/s RZ-BPSK data with a pattern length of 2231 reveals a receiving power sensitivity of 16.3dBm at the requested bit error rate of 109 by setting the DC bias of the BPSK demodulator at 3.76 V. After 25 km single-mode-fiber transmission, the RZ-BPSK data indicates a power penalty of 4 dB when compared with the back-to-back case.

© 2014 Optical Society of America

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(060.4510) Fiber optics and optical communications : Optical communications
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Research Papers

Original Manuscript: May 1, 2013
Revised Manuscript: May 15, 2014
Manuscript Accepted: May 22, 2014
Published: June 16, 2014

Yu-Chieh Chi, Huai-Yung Wang, Chih-Hsien Cheng, and Gong-Ru Lin, "40  Gbit/s Pulsed RZ-BPSK Transmission With a 40  GHz Self-Pulsated Distributed Feedback Laser Diode Mach–Zehnder Intensity Modulator Link," J. Opt. Commun. Netw. 6, 610-618 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Mizuochi, K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, K. Motoshima, and K. Kasahara, “A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise,” J. Lightwave Technol., vol.  21, no. 9, pp. 1933–1943, Sept. 2003. [CrossRef]
  2. S. Bigo, E. Desurvire, S. Gauchard, and E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett., vol.  30, no. 12, pp. 984–985, June 1994. [CrossRef]
  3. D. Breuer and K. Petermann, “Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard-fiber systems,” IEEE Photon. Technol. Lett., vol.  9, no. 3, pp. 398–400, Mar. 1997. [CrossRef]
  4. R. S. Tucker, J. M. Wiesenfeld, A. H. Gnauck, and J. E. Bowers, “8  Gbit/s return-to-zero modulation of a semiconductor laser by gain-switching,” Electron. Lett., vol.  22, no. 25, pp. 1329–1331, Dec. 1986. [CrossRef]
  5. Y. C. Chang, Y. H. Lin, J. H. Chen, and G.-R. Lin, “All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition,” Opt. Express, vol.  12, no. 19, pp. 4449–4456, Sept. 2004. [CrossRef]
  6. G.-R. Lin, Y. C. Chi, Y. S. Liao, H. C. Kuo, H. L. Wang, and G. C. Lin, “A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission,” Opt. Express, vol.  20, no. 13, pp. 13622–13635, June 2012. [CrossRef]
  7. J. J. Veselka, S. K. Korotky, P. V. Mamyshev, A. H. Gnauck, G. Raybon, and N. M. Froberg, “A soliton transmitter using a CW laser and an NRZ driven Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol.  8, no. 7, pp. 950–952, July 1996. [CrossRef]
  8. J. Torregrosa, H. Maestre, J. Capmany, and C. R. Fernández-Pousa, “Return-to-zero pulse generators using overdriven amplitude modulators at one fourth of the data rate,” IEEE Photon. Technol. Lett., vol.  19, no. 22, pp. 1837–1839, Nov. 2007. [CrossRef]
  9. P. J. Winzer, C. Dorrer, R. J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Photon. Technol. Lett., vol.  16, no. 5, pp. 1379–1381, May 2004. [CrossRef]
  10. P. J. Winzer and J. Leuthold, “Return-to-zero modulator using a single NRZ drive signal and an optical delay interferometer,” IEEE Photon. Technol. Lett., vol.  13, no. 12, pp. 1298–1300, Dec. 2001. [CrossRef]
  11. L. Chen, Y. F. Shao, and S. C. Wen, “A novel scheme to generate dark-RZ pulse and study on its transmission performance,” Opt. Commun., vol.  269, no. 1, pp. 241–246, Jan. 2007. [CrossRef]
  12. C. Peucheret, Y. Geng, M. Svalgaard, B. Zsigri, H. R. Sørensen, N. Chi, H. J. Deyerl, M. Kristensen, and P. Jeppesen, “Direct UV written Michelson interferometer for RZ signal generation using phase-to-intensity modulation conversion,” IEEE Photon. Technol. Lett., vol.  17, no. 8, pp. 1674–1676, Aug. 2005. [CrossRef]
  13. X. Zou and J. Yao, “Repetition-rate-tunable return-to-zero and carrier-suppressed return-to-zero optical pulse train generation using a polarization modulator,” Opt. Lett., vol.  34, no. 3, pp. 313–315, Feb. 2009. [CrossRef]
  14. G.-R. Lin, Y. C. Chang, Y. H. Lin, and J. H. Chen, “All-optical data format conversion in synchronously modulated single-mode Fabry–Pérot laser diode using external injection-locking-induced nonlinear threshold reduction effect,” IEEE Photon. Technol. Lett., vol.  17, no. 6, pp. 1307–1309, June 2005. [CrossRef]
  15. C. C. Lin, H. C. Kuo, P. C. Peng, and G.-R. Lin, “Chirp and error rate analyses of an optical-injection gain-switching VCSEL based all-optical NRZ-to-PRZ converter,” Opt. Express, vol.  16, no. 7, pp. 4838–4847, Mar. 2008. [CrossRef]
  16. G.-R. Lin, K. C. Yu, and Y. C. Chang, “10  Gbit/s all-optical NRZ-to-RZ data format conversion based on a backward dark-optical-comb injected semiconductor optical amplifier,” Opt. Lett., vol.  31, no. 10, pp. 1376–1378, May 2006. [CrossRef]
  17. C. C. Lin, Y. C. Chi, H. C. Kuo, P. C. Peng, C. J. Chang-Hasnain, and G.-R. Lin, “Beyond-bandwidth electrical pulse modulation of a TO-can packaged VCSEL for 10  Gbit/s injection-locked NRZ-to-RZ transmission,” J. Lightwave Technol., vol.  29, no. 6, pp. 830–841, Mar. 2011. [CrossRef]
  18. C. Yan, Y. Su, L. Yi, L. Leng, X. Tian, X. Xu, and Y. Tian, “All-optical format conversion from NRZ to BPSK,” IEEE Photon. Technol. Lett., vol.  18, no. 22, pp. 2368–2370, Nov. 2006. [CrossRef]
  19. W. Hong, D. Huang, X. Zhang, and G. Zhu, “Simulation and analysis of OOK-to-BPSK format conversion based on gain-transparent SOA used as optical phase-modulator,” Opt. Express, vol.  15, no. 26, pp. 18357–18369, Dec. 2007. [CrossRef]
  20. W. Astar and G. M. Carter, “Mitigation of XPM penalty in 10-Gb/s OOK/DBPSK mixed modulation format 50-GHz-spaced WDM transmission by conversion of OOK to BPSK using an SOA,” IEEE Photon. Technol. Lett., vol.  20, no. 20, pp. 1715–1717, Oct. 2008. [CrossRef]
  21. K. Mishina, A. Maruta, S. Mitani, T. Miyahara, K. Ishida, K. Shimizu, T. Hatta, K. Motoshima, and K. Kitayama, “NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter,” J. Lightwave Technol., vol.  24, no. 10, pp. 3751–3758, Oct. 2006. [CrossRef]
  22. K. Mishina, S. M. Nissanka, A. Maruta, S. Mitani, K. Ishida, K. Shimizu, T. Hatta, and K. Kitayama, “All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters,” Opt. Express, vol.  15, no. 12, pp. 7774–7785, June 2007. [CrossRef]
  23. F. Fresi, M. Scaffardi, N. Amaya, R. Nejabati, D. Simeonidou, and A. Bogoni, “40-Gb/s NRZ-to-RZ and OOK-to-BPSK format and wavelength conversion on a single SOA-MZI for gridless networking operations,” IEEE Photon. Technol. Lett., vol.  24, no. 4, pp. 279–281, Feb. 2012. [CrossRef]
  24. T. Ye, C. Yan, Y. Lu, F. Liu, and Y. Su, “All-optical regenerative NRZ-to-RZ format conversion using coupled ring-resonator optical waveguide,” Opt. Express, vol.  16, no. 20, pp. 15325–15331, Sept. 2008. [CrossRef]
  25. Y. Lu, F. Liu, M. Qiu, and Y. Su, “All-optical format conversions from NRZ to BPSK and QPSK based on nonlinear responses in silicon microring resonators,” Opt. Express, vol.  15, no. 21, pp. 14275–14282, Oct. 2007. [CrossRef]
  26. W. Astar, C.-C. Wei, Y.-J. Chen, J. Chen, and G. M. Carter, “Polarization-insensitive, 40  Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF,” Opt. Express, vol.  16, no. 16, pp. 12039–12049, Aug. 2008. [CrossRef]
  27. C. C. Wei, W. Astar, J. Chen, Y.-J. Chen, and G. M. Carter, “Theoretical investigation of polarization-insensitive data format conversion of RZ-OOK to RZ-BPSK in a nonlinear birefringent fiber,” Opt. Express, vol.  17, no. 6, pp. 4306–4316, Mar. 2009. [CrossRef]
  28. G. W. Lu, E. Tipsuwannakul, T. Miyazaki, C. Lundström, M. Karlsson, and P. A. Andrekson, “Format conversion of optical multilevel signals using FWM-based optical phase erasure,” J. Lightwave Technol., vol.  29, no. 16, pp. 2460–2466, Aug. 2011. [CrossRef]
  29. L. R. Chen and J. Wang, “All-optical RZ-OOK to RZ-BPSK conversion with multicasting based on XPM in highly nonlinear fiber,” Opt. Commun., vol.  285, no. 16, pp. 3459–3465, July 2012. [CrossRef]
  30. B. M. Cannon, W. Astar, T. Mahmood, P. Apiratikul, G. A. Porkolab, C. J. K. Richardson, and G. M. Carter, “Data transfer from RZ-OOK to RZ-BPSK by polarization-insensitive XPM in a passive birefringent nonlinear AlGaAs waveguide,” J. Lightwave Technol., vol.  31, no. 6, pp. 952–966, Mar. 2013. [CrossRef]
  31. K. Ennser, R. I. Laming, and M. N. Zervas, “Analysis of 40  Gb/s TDM-transmission over embedded standard fiber employing chirped fiber grating dispersion compensators,” J. Lightwave Technol., vol.  16, no. 5, pp. 807–811, May 1998. [CrossRef]
  32. C. M. Weinert, R. Ludwig, W. Pieper, H. G. Weber, D. Breuer, K. Petermann, and F. Küppers, “40  Gb/s and 4×40  Gb/s TDM/WDM standard fiber transmission,” J. Lightwave Technol., vol.  17, no. 11, pp. 2276–2284, Nov. 1999. [CrossRef]
  33. X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6  Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett., vol.  43, no. 16, pp. 890–892, Aug. 2007. [CrossRef]
  34. G.-R. Lin, Y. C. Chang, and J. R. Wu, “Rational harmonic mode-locking of erbium-doped fiber laser at 40  GHz using a loss-modulated Fabry-Perot laser diode,” IEEE Photon. Technol. Lett., vol.  16, no. 8, pp. 1810–1812, Aug. 2004. [CrossRef]
  35. M. Y. Jeon, Y. A. Leem, D. C. Kim, E. Sim, S.-B. Kim, H. Ko, D.-S. Yee, and K. H. Park, “40  Gbps all-optical 3R regeneration and format conversion with related InP-based semiconductor devices,” ETRI J., vol.  29, no. 5, pp. 633–640, Oct. 2007. [CrossRef]
  36. J. Wang, J. Sun, Q. Sun, X. Zhang, and D. Huang, “Experimental demonstration on PPLN-based 40  Gbit/s all-optical NRZ-to-CSRZ, NRZ-to-RZ, and NRZ-DPSK-to-RZ-DPSK format conversions,” in Proc. AOE, 2008, pp. 1–3.
  37. X. S. Yao and G. Lutes, “A high-speed photonic clock and carrier recovery device,” IEEE Photon. Technol. Lett., vol.  8, no. 5, pp. 688–690, May 1996. [CrossRef]
  38. L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett., vol.  15, no. 7, pp. 981–983, July 2003. [CrossRef]
  39. Y. C. Chi and G.-R. Lin, “A self-started laser diode pulsation based synthesizer-free optical return-to-zero on–off-keying data generator,” IEEE Trans. Microwave Theor. Tech., vol.  58, no. 8, pp. 2292–2298, Aug. 2010. [CrossRef]
  40. Y. C. Chi, P. C. Peng, and G.-R. Lin, “Clock-free RZ-BPSK data generation using self-starting optoelectronic oscillator,” J. Lightwave Technol., vol.  29, no. 11, pp. 1702–1707, June 2011. [CrossRef]
  41. H. F. Schlaak, A. Neyer, and W. Sohler, “Electrooptical oscillator using an integrated cutoff modulator,” Opt. Commun., vol.  32, no. 1, pp. 72–74, Jan. 1980. [CrossRef]
  42. J. Lasri, P. Devgan, R. Tang, and P. Kumar, “Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10  GHz or higher) optical pulses,” Opt. Express, vol.  11, no. 12, pp. 1430–1435, June 2003. [CrossRef]
  43. W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microwave Theor. Tech., vol.  53, no. 3, pp. 929–933, Mar. 2005. [CrossRef]
  44. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation,” Opt. Express, vol.  31, no. 6, pp. 811–813, Mar. 2006.
  45. G.-R. Lin, K. C. Yu, C. L. Pan, and Y. S. Liao, “All-optical decision-gating of 10-Gb/s RZ data in a semiconductor optical amplifier temporally gain-shaped with dark-optical-comb,” J. Lightwave Technol., vol.  25, no. 7, pp. 1651–1658, July 2007. [CrossRef]
  46. H. Hasegawa, Y. Oikawa, and M. Nakazawa, “A 10-GHz optoelectronic oscillator at 850  nm using a single-mode VCSEL and a photonic crystal fiber,” IEEE Photon. Technol. Lett., vol.  19, no. 19, pp. 1451–1453, Oct. 2007. [CrossRef]
  47. H. E. Kotb, A. M. E. Safwat, H. Boghdady, and D. A. M. Khalil, “RF optoelectronic oscillator using a directly modulated semiconductor laser and a fiber optical ring filter,” Microw. Opt. Technol. Lett., vol.  51, no. 2, pp. 470–475, Feb. 2009. [CrossRef]
  48. Y. C. Chi and G.-R. Lin, “Distinguished RZ-OOK performances between DFBLD pulsed carriers self-started by gain switching and nonlinear absorption modulation,” IEEE J. Sel. Top. Quantum Electron., vol.  17, no. 5, pp. 1146–1152, Sept.–Oct. 2011. [CrossRef]
  49. M. Shin, P. S. Devgan, V. S. Grigoryan, P. Kumar, Y. D. Chung, and J. Kim, “Low phase-noise 40  GHz optical pulses from a self-starting electroabsorption-modulator-based optoelectronic oscillator,” in Proc. Optical Fiber Communication Conf., Anaheim, 2006, paper OFB1.
  50. D. H. Chang, H. R. Fetterman, H. Erlig, H. Zhang, M. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett., vol.  14, no. 2, pp. 191–193, Feb. 2002. [CrossRef]
  51. Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators,” IEEE J. Quantum Electron., vol.  44, no. 9, pp. 858–866, Sept. 2008. [CrossRef]
  52. G.-R. Lin and I.-H. Chiu, “Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10  GHz,” Opt. Express, vol.  13, no. 22, pp. 8772–8780, Oct. 2005. [CrossRef]
  53. G.-H. Peng, Y. C. Chi, and G.-R. Lin, “DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring,” Opt. Express, vol.  16, no. 17, pp. 13405–13413, Aug. 2008. [CrossRef]
  54. G. P. Agrawal, Nonlinear Fiber Optics. Academic, 1995.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited