OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: O. Gerstel and P. Iannone
  • Vol. 6, Iss. 8 — Aug. 1, 2014
  • pp: 684–694

Security Enhancement in Free-Space Optics Using Acousto-Optic Deflectors

Mina Eghbal and Jamshid Abouei  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 6, Issue 8, pp. 684-694 (2014)
http://dx.doi.org/10.1364/JOCN.6.000684


View Full Text Article

Enhanced HTML    Acrobat PDF (1044 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we propose a novel physical layer design for beam transmission that enhances the data security in a terrestrial free-space optical (FSO) communication system. The optical transmitter sends successive packets through different beam paths between the transmitter apertures and the receiver apertures using acousto-optic deflectors (AODs) with synthetic holographic gratings. Increasing the radius and intensity of the beam at the optical link raises the probability of eavesdropping; however, these parameters are sensitive to atmospheric turbulence. More precisely, as atmospheric turbulence increases, the radius of the beam increases while the intensity of the beam decreases. Thus, if the intensity of the beam is adjusted based on the strong turbulence in order to receive sufficient intensity at the receiver, then the intensity of the beam increases when atmospheric turbulence decreases, which causes the link security to be reduced. We formulate the beam settings at the transmitter where the AOD’s parameters are varied, which cause the Gaussian beam changes to the secondary Gaussian Schell-model (GSM) beam with different parameters. For such a situation, it is demonstrated, analytically supported by simulation results, that the radius of the beam at different beam paths can be controlled by changing the AOD’s parameters in different atmospheric turbulence. In addition, the radius of the adjusted beam in the secured FSO transceiver is compared with that of the ideal Gaussian and the ideal GSM beams in various turbulence conditions.

© 2014 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.1040) Optical devices : Acousto-optical devices
(060.2605) Fiber optics and optical communications : Free-space optical communication
(060.4785) Fiber optics and optical communications : Optical security and encryption

ToC Category:
Research Papers

History
Original Manuscript: January 13, 2014
Revised Manuscript: April 24, 2014
Manuscript Accepted: June 12, 2014
Published: July 22, 2014

Citation
Mina Eghbal and Jamshid Abouei, "Security Enhancement in Free-Space Optics Using Acousto-Optic Deflectors," J. Opt. Commun. Netw. 6, 684-694 (2014)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-6-8-684


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Kedar and S. Arnon, “Urban optical wireless communication networks: The main challenges and possible solutions,” IEEE Commun. Mag., vol.  42, no. 5, pp. S2–S7, May 2004. [CrossRef]
  2. V. V. Nikulin, R. Khandekar, J. Sofka, and G. Tartakovsky, “Acousto-optic pointing and tracking systems for free-space laser communications,” Proc. SPIE, vol.  5892, 589216, Aug. 2005. [CrossRef]
  3. D. K. Borah and D. G. Voelz, “Spatially partially coherent beam parameter optimization for free space optical communications,” Opt. Express, vol.  18, no. 20, pp. 20746–20758, Sept. 2010. [CrossRef]
  4. J. Abouei and K. N. Plataniotis, “Multiuser diversity scheduling in free-space optical communications,” J. Lightwave Technol., vol.  30, no. 9, pp. 1351–1358, May 2012. [CrossRef]
  5. V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, “Secure chaotic transmission on a free-space optics data link,” IEEE J. Quantum Electron., vol.  44, no. 11, pp. 1089–1095, Nov. 2008. [CrossRef]
  6. M. R. Chatterjee and M. Al-Saedi, “Examination of chaotic signal encryption and recovery for secure communication using hybrid acousto-optic feedback,” Opt. Eng., vol.  50, no. 5, 055002, May 2011. [CrossRef]
  7. A. K. Ghosh, P. Verma, S. Cheng, R. C. Huck, M. R. Chatterjee, and M. Al-Saedi, “Design of acousto-optic chaos based secure free-space optical communication links,” Proc. SPIE, vol.  7464, 74640L, Aug. 2009. [CrossRef]
  8. R. Vallee and C. Delisle, “Mode description of the dynamical evolution of an acousto-optic bistable device,” IEEE J. Quantum Electron., vol.  21, no. 9, pp. 1423–1428, Sept. 1985. [CrossRef]
  9. M. R. Chatterjee and J.-J. Huang, “Demonstration of acousto-optic bistability and chaos by direct nonlinear circuit modeling,” Appl. Opt., vol.  31, no. 14, pp. 2506–2517, May 1992. [CrossRef]
  10. R. Rejeb, M. S. Leeson, C. M. Machuca, and I. Tomkos, “Control and management issues in all-optical networks,” J. Netw., vol.  5, no. 2, pp. 132–139, Feb. 2010. [CrossRef]
  11. N. Das, Optical Communications Systems. InTech, Mar. 2012.
  12. M. Furdek and N. Skorin-Kapov, “Physical-layer attacks in all-optical WDM networks,” in Proc. IEEE Int. Convention MIPRO, May 2011, pp. 446–451.
  13. S. V. Kartalopoulos, “Security in advanced optical communication networks,” in Proc. IEEE Int. Conf. on Communications (ICC), Dresden, Germany, June 2009.
  14. K.-I. Kitayama, M. Sasaki, S. Araki, M. Tsubokawa, A. Tomita, K. Inoue, K. Harasawa, Y. Nagasako, and A. Takada, “Security in photonic networks: Threats and security enhancement,” J. Lightwave Technol., vol.  29, no. 21, pp. 3210–3222, Nov. 2011. [CrossRef]
  15. X. Wu, P. Liu, and M. Matsumoto, “A study on atmospheric turbulence effects in full-optical free-space communication systems,” in Proc. IEEE Int. Conf. on Wireless Communications Networking and Mobile Computing (WiCOM), Sept. 2010.
  16. W. O. Popoola, “Subcarrier intensity modulated free-space optical communication systems,” Ph.D dissertation, Northumbria University, Sept. 2009.
  17. I. C. Chang, “Acousto-optic devices and applications,” IEEE Trans. Sonics Ultrason., vol.  SU-23, no. 1, pp. 2–21, Jan. 1976. [CrossRef]
  18. W. Jian, “Propagation of a Gaussian-Schell beam through turbulent media,” J. Mod. Opt., vol.  37, no. 4, pp. 671–684, 1990. [CrossRef]
  19. J. Wu and A. D. Boardman, “Coherence length of a Gaussian-Schell beam and atmospheric turbulence,” J. Mod. Opt., vol.  38, no. 7, pp. 1355–1363, 1991. [CrossRef]
  20. E. Tervonen, A. T. Friberg, and J. Turunen, “Acousto-optic conversion of laser beams into flat-top beams,” J. Mod. Opt., vol.  40, no. 4, pp. 625–635, July 1993. [CrossRef]
  21. E. T. Tervonen, J. P. Turunen, and A. T. Friberg, “Synthetic acousto-optic holograms,” Proc. SPIE, vol.  1319, pp. 288–289, July 1990. [CrossRef]
  22. A. C. Schell, “A technique for determination of the radiation pattern of a partially coherent aperture,” IEEE Trans. Antennas Propag., vol.  AP-15, no. 1, pp. 187–188, Jan. 1967. [CrossRef]
  23. Y. Cai, “Propagation of some coherent and partially coherent laser beams,” Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden, 2006.
  24. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space laser communication,” J. Opt. Soc. Am. A, vol.  19, no. 9, pp. 1794–1802, Sept. 2002. [CrossRef]
  25. T. Shirai, A. Dogariu, and E. Wolf, “Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence,” Opt. Lett., vol.  28, no. 8, pp. 610–612, Aug. 2003. [CrossRef]
  26. T. Shirai, A. Dogariu, and E. Wolf, “Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence,” J. Opt. Soc. Am. A, vol.  20, no. 6, pp. 1094–1102, June 2003. [CrossRef]
  27. J.-X. Ling and P. Z. Cai, “Turbulence-induced changes in degree of polarization, degree of coherence and spectrum of partially coherent electromagnetic beams,” Chin. Phys. B, vol.  19, no. 2, pp. 1–19, Feb. 2010.
  28. G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun., vol.  222, pp. 117–125, July 2003. [CrossRef]
  29. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics. Cambridge University, 1995.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited