OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: O. Gerstel and P. Iannone
  • Vol. 6, Iss. 9 — Sep. 1, 2014
  • pp: 764–772

Incoherent OFDMA for Multimode Passive Optical Home and Office Networks

L. Maksymiuk  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 6, Issue 9, pp. 764-772 (2014)
http://dx.doi.org/10.1364/JOCN.6.000764


View Full Text Article

Enhanced HTML    Acrobat PDF (1642 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper a novel concept of the multimode fiber-based passive optical network utilizing orthogonal frequency division multiple access (OFDMA) is presented. Usage of multimode fibers ensures effective optical beat interference mitigation, thus making wavelength control in the uplink not necessary. Several experimental results confirming proper operation and good performance of the proposed solution are provided. The orthogonal frequency division multiplexing (OFDM) transmission was tested in both the baseband and pass band of the multimode fiber. Several issues related to the proposed solution were addressed, namely, optical beat interference, modal noise, and the frequency response fluctuations of the multimode fiber links.

© 2014 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(060.4258) Fiber optics and optical communications : Networks, network topology

ToC Category:
Research Papers

History
Original Manuscript: March 25, 2014
Revised Manuscript: June 23, 2014
Manuscript Accepted: June 27, 2014
Published: August 5, 2014

Citation
L. Maksymiuk, "Incoherent OFDMA for Multimode Passive Optical Home and Office Networks," J. Opt. Commun. Netw. 6, 764-772 (2014)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-6-9-764


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol., vol.  27, no. 3, pp. 189–204, 2009. [CrossRef]
  2. J. Guillory, K. Chikha, A. Pizzinat, P. Guignard, B. Charbonnier, J. Etrillard, and C. Algani, “WDM-FDM approach for a multiservice home network,” in OFC, 2013, paper NTu3J.2.
  3. L. Maksymiuk and B. Wisnicki, “Impact of the frequency response fluctuations of the multimode fiber on the OFDM transmission,” Microw. Opt. Technol. Lett. 55, 845–849, Apr. 2013. [CrossRef]
  4. J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol., vol.  24, no. 1, pp. 429–441, 2006. [CrossRef]
  5. E. Giacoumidis, X. Q. Jin, and J. M. Tang, “Statistical investigations of optical OFDM adaptive loading algorithm over 1000 worst-case MMFs,” in OFC/NFOEC, 2011, paper JWA89.
  6. N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10  Gb/s,” IEEE J. Sel. Areas Commun., vol.  28, no. 6, pp. 781–790, 2010. [CrossRef]
  7. M.-K. Hong, S.-M. Jung, I. Kartiwa, and S.-K. Han, “Slow adaptive OFDMA-PON through channel stabilization employing seed carrier clipping,” IEEE Photon. Technol. Lett., vol.  24, no. 24, pp. 2292–2295, 2012. [CrossRef]
  8. N. Cvijetic, M. Cvijetic, M. F. Huang, E. Ip, Y.-K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol., vol.  30, no. 4, pp. 493–503, 2012. [CrossRef]
  9. S.-M. Jung, Y.-Y. Won, and S.-K. Han, “Optical beating interference reduction in DMT based passive optical network by using homodyne balanced detection technique,” in ICTC, 2013, pp. 703–704.
  10. S.-H. Cho, J. H. Lee, K. H. Doo, S. I. Myong, J. H. Lee, and S. S. Lee, “Investigation of upstream transmission performances with cost-effective transmitter front-end for ONU in IM/DD OFDMA-PON,” in ICTC, 2012, pp. 694–695.
  11. X. Xie, Y. Qiao, and Y. Ji, “The study of wavelength interval between adjacent ONUs in OFDMA-PON,” in ACP, 2010, pp. 621–622.
  12. I. Cano, M. C. Santos, X. Escayola, V. Polo, E. Giacoumidis, C. Kachris, I. Tomkos, and J. Prat, “An OFDMA-PON with non-preselected independent ONU sources and centralized feedback wavelength control: Dimensioning and experimental results,” in ICTON, 2012, pp. 1–4.
  13. X. Escayola, I. Cano, M. Santos, and J. Prat, “OFDM-PON performance with limited quantization,” in ICTON, 2013, pp. 1–4.
  14. H.-Y. Chen, M. Yuang, P.-L. Tien, D.-Z. Hsu, C.-C. Wei, Y.-S. Tsai, and J. Chen, “Design and demonstration of a colorless WDM-OFDMA PON system architecture achieving symmetric 20-Gb/s transmissions with residual interference compensation,” Opt. Express, vol.  21, no. 18, pp. 21097–21104, 2013. [CrossRef]
  15. M. C. Yuang, D.-Z. Hsu, P.-L. Tien, H.-Y. Chen, C.-C. Wei, S.-H. Chen, and J. Chen, “An energy and cost efficient WDM/OFDMA PON system: Design and demonstration,” J. Lightwave Technol., vol.  31, no. 16, pp. 2809–2816, 2013. [CrossRef]
  16. J. Siuzdak, M. Kowalczyk, L. Maksymiuk, and G. Stepniak, “Substantial OBI noise reduction in MM fiber network,” IEEE Photon. Technol. Lett., vol.  25, no. 14, pp. 1350–1353, 2013. [CrossRef]
  17. P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun., vol.  43, pp. 773–775 (1995). [CrossRef]
  18. C. Ruprecht, K. Habel, J. von Hoyningen-Huene, Y. Chen, N. Hanik, and W. Rosenkranz, “Timing advance tracking for coherent OFDMA-PON upstream system,” in ACP, 2013, paper AF1G.4.
  19. R. E. Epworth, “Phenomenon of modal noise in fiber systems,” in OFC, Washington, DC, Mar. 1979.
  20. L. Maksymiuk and J. Siuzdak, “Modeling of low-frequency modal noise induced by multimode couplers in cascade connections,” Opt. Appl., vol.  41, no. 3, pp. 649–660, 2011.
  21. H. Shihonara, “Modal-noise characteristics in aerial optical cables subjected to vibration,” J. Lightwave Technol., vol.  1, no. 4, pp. 535–541, Dec. 1983. [CrossRef]
  22. R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fiber depends on source spectrum and fiber dispersion,” J. Lightwave Technol., vol.  3, no. 1, pp. 7–12, Feb. 1985. [CrossRef]
  23. J. Siuzdak, G. Stepniak, M. Kowalczyk, and L. Maksymiuk, “Instability of the multimode fiber frequency response beyond the baseband for coherent sources,” IEEE Photon. Technol. Lett., vol.  21, no. 14, 993–995, 2009. [CrossRef]
  24. Y.-Y. Won, H.-C. Kwon, and S.-K. Han, “Reduction of optical beat interference using gain-saturated RSOA in upstream WDM/SCM optical links,” IET Optoelectron., vol.  1, no. 2, pp. 61–64, 2007. [CrossRef]
  25. S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Technique for the reduction of optical beat interference in subcarrier multiplexed systems,” in OFC, 1996, pp. 213–214.
  26. R. D. Feldman, K.-Y. Liou, G. Raybon, and R. F. Austin, “Reduction of optical beat interference in a subcarrier multiple-access passive optical network through the use of an amplified light-emitting diode,” IEEE Photon. Technol. Lett., vol.  8, no. 1, pp. 116–118, 1996. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited