OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Richard A. Linke
  • Vol. 2, Iss. 7 — Jul. 6, 2003
  • pp: 243–254

Optical switch fabrics for terabit-class routers and packet switches [Invited]

Jurgen Gripp, Marcus Duelk, John Simsarian, Ashish Bhardwaj, Pietro Bernasconi, Oldrich Laznicka, Martin Zirngibl, and Dimitrios Stiliadis  »View Author Affiliations


Journal of Optical Networking, Vol. 2, Issue 7, pp. 243-254 (2003)


View Full Text Article

Acrobat PDF (138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Next-generation switches and routers may rely on optical switch fabrics to overcome cost, power, space, and scalability problems that arise in sizing traditional electrical backplanes into the terabit regime. However, several technological and architectural problems must be overcome to be able to use such an approach. The reconfiguration times of optical packet fabrics are longer than those of electronic fabrics. Even though we can relax some of the constraints in switching speed by using appropriate packetization and scheduling mechanisms, we need to adapt optical technology to the needs of packet switching. We present an optical packet fabric design, based on arrayed waveguide gratings and fast wavelength tuning, and present methods for solving the technical problems of fast switching.

© 2003 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
FOCUS: HIGH-CAPACITY PACKET-SWITCHED FABRICS

History
Original Manuscript: March 13, 2003
Revised Manuscript: March 12, 2003
Published: July 1, 2003

Citation
Jurgen Gripp, Marcus Duelk, John Simsarian, Ashish Bhardwaj, Pietro Bernasconi, Oldrich Laznicka, Martin Zirngibl, and Dimitrios Stiliadis, "Optical switch fabrics for terabit-class routers and packet switches [Invited]," J. Opt. Netw. 2, 243-254 (2003)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jon-2-7-243


Sort:  Journal  |  Reset

References

  1. K. Kar, T. Lakshman, D. Stiliadis, and L. Tassiulas, “Reduced complexity input buffered switches,” in Hot Interconnects VIII (Institute of Electrical and Electronics Engineers, New York, 2000), paper 1.3.
  2. T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High speed switch scheduling for local area networks,” ACM Trans. Comput. Syst. 11, 319–52 (1993).
  3. N. McKeown, V. Anantharam, and J.Walrand, “Achieving 100% throughput in an input-queued switch,” in Proceedings of IEEE INFOCOM 1996 (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 296–302.
  4. N. McKeown and T. Anderson, “A quantitative comparison of scheduling algorithms for inputqueued switches,” Comp. Netw. ISDN Syst. 30, 2309–2326 (1998).
  5. S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching output queueing with a combined input output queued switch,” IEEE J. Sel. Areas Commun. 17, 1030–1039 (1999).
  6. M. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Input-queued router architectures exploiting cell-based switching fabrics,” Comput. Netw. 37, 541–559 (2001).
  7. D. Stephens and H. Zhang, “A distributed scheduling algorithm in high-speed input queued crossbars,” in Proceedings of IEEE INFOCOM 1998 (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 282–290.
  8. J. G. Dai and B. Prabhakar, “The Throughput of Data Switches with and without Speedup,” in Proceedings of IEEE INFOCOM 2000 (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 1184–1192.
  9. K. Kar, T. Lakshman, D. Stiliadis, and L. Tassiulas, “Scheduling algorithms for optical packet fabrics,” IEEE J. Sel. Areas Commun. (June, 2003).
  10. K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE 70, 420–457 (1982).
  11. R. Ryf, J. Kim, J. Hickey, A. Gnauck, D. Carr, F. Pardo, C. Bolle, R. Frahm, N. Basavanhally, C. Yoh, D. Ramsey, R. Boie, R. George, J. Kraus, C. Lichtenwalner, R. Papazian, J. Gates, H. Shea, A. Gasparyan, V. Muratov, and J. Griffith, “1296-port MEMS transparent optical crossconnect with 2.07 Petabit/s switch capacity,” in Optical Fiber Communication Conference (OFC 2001), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper, PD28.
  12. A. Neukermans and R. Ramaswami, “MEMS technology for optical networking applications,” IEEE Commun. Mag. 39, 62–69 (2001).
  13. J. E. Fouquet, “Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar lightwave circuit,” in Optical Fiber Communication Conference (OFC 2000), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper TuM1-1.
  14. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silicabased planar lightwave circuit technology,” J. Lightwave Technol. 19, 371–379 (2001).
  15. D. J. Bishop, C. R. Giles, and G. P. Austin, “The Lucent LambdaRouter: MEMS technology of the future here today,” IEEE Commun. Mag. 40, 75–79 (2002).
  16. P. Granestrand, B. Lagerström, P. Svensson, H. Olofsson, J. Falk, and B. Stoltz, “Pigtailed treestructured 8×8 LiNbO3 switch matrix with 112 digital optical switches,” IEEE Photon. Technol. Lett. 6, 71–73 (1994).
  17. H. Okayama and M. Kawahara, “Prototype 32×32 optical switch matrix,” Electron. Lett. 30, 1128–1129 (1994).
  18. K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, “First 8×8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers,” Electron. Lett. 28, 441–443 (1992).
  19. J. Sasaki, H. Hatakeyama, T. Tamanuki, S. Kitamura, M. Yamaguchi, N. Kitamura, T. Shimoda, M. Kitamura, T. Kato, and M. Itoh, “Hybrid integrated 4×4 optical matrix switch using self-aligned semiconductor optical amplifier gate arrays and silica planar lightwave circuit,” Electron. Lett. 34, 986–987 (1998).
  20. N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommereau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, “A highly integrated 32-SOA gates optoelectronic module suitable for IP multiterabit optical packet routers,” in Optical Fiber Communication Conference (OFC 2001), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD32.
  21. D. Chiaroni, P. Bonno, O. Rofidal, J. Jacquinot, P. Poignant, C. Coeurjoly, F. Fernandez, E. Mestre, J. Moncelet, A. Noury, A. Jourdan, T. Zami, A. Dupas, M. Renaud, N. Sahri, D. Keller, S. Silvestre, G. Eilenberger, S. Bunse, W. Lautenschlaeger, and F. Masetti, “First demonstration of an asynchronous optical packet switching matrix prototype for MultiTerabitclass routers/switches,” in 27th European Conference on Optical Communications 2001 (ECOC 2001) (Institute of Electrical and Electronics Engineers, New York, 2001), postdeadline paper ThA4.11.
  22. E. Shekel, A. Feingold, Z. Fradkin, A. Geron, J. Levy, G. Matmon, D. Majer, E. Rafaely, M. Rudman, G. Tidhar, J. Vecht, and S. Ruschin, “64×64 fast optical switching module,” in Optical Fiber Communication Conference (OFC 2002), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper TuF3.
  23. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
  24. C. Dragone, “An N ×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
  25. P. Bernasconi, C. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, “Large N ×N waveguide grating routers,” J. Lightwave Technol. 18, 985–991 (2000).
  26. K. Okamoto, K. Syuto, H. Takahashi, and Y. Ohmori, “Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25 GHz channel spacing,” Electron. Lett. 32, 1474–1476 (1996).
  27. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
  28. F. P. Schäfer, W. Schmidt, and J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9, 306–309 (1966).
  29. V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
  30. R. C. Alferness, T. L. Koch, L. L. Buhl, F. Storz, F. Heismann, and M. J. R. Martyak, “Grating-assisted InGaAsP/InP vertical codirectional coupler filter,” Appl. Phys. Lett. 55, 2011–2013 (1989).
  31. G. Busico, N. D. Whitbread, P. J. Williams, D. J. Robbins, A. J. Ward, and D. C. J. Reid, “A widely tunable digital supermode DBR laser with high SMSR,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), paper 3.3.2.
  32. J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, and M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1805–1807 (1992).
  33. D. Van Thourhout, L. Zhang, W. Yang, B. I. Miller, N. J. Sauer, and C. R. Doerr, “Compact digitally tunable laser,” IEEE Photon. Technol. Lett. 15, 182–184 (2003).
  34. M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zirngibl, “16-channel digitally tunable packet switching transmitter with sub-nanosecond switching time,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), paper 3.3.3.
  35. J. Simsarian, A. Bhardwaj, K. Dreyer, J. Gripp, O. Laznicka, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “A widely tunable laser transmitter with fast, accurate switching between all channel combinations,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), paper 3.3.6.
  36. A. Bhardwaj, J. Gripp, J. Simsarian, and M. Zirngibl, “Long-term wavelength switching measurements with random schedules on fast tunable lasers,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), paper 11.5.3.
  37. M. Reinhold, C. Dorschky, E. Rose, R. Pullela, P. Mayer, F. Kunz, Y. Baeyens, T. Link, and J.-P. Mattia, “A fully integrated 40-Gb/s clock and data recovery IC with 1:4 DEMUX in SiGe technology,” IEEE J. Solid-State Circuits 36, 1937–1945 (2001).
  38. J. Gripp, M. Duelk, J. Simsarian, P. Bernasconi, A. Bhardwaj, K. Sherman, K. Dreyer, M. Zirngibl, and O. Laznicka, “4 x 4 demonstration of a 1.2 Tb/s (32 x 40 Gb/s) optical switch fabric for multi-Tb/s packet routers,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), postdeadline paper PD2.4.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited