OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Richard A. Linke
  • Vol. 3, Iss. 10 — Oct. 1, 2004
  • pp: 742–757

Alternative structures for two-dimensional MEMS optical switches [Invited]

Victor Li, Chun Yin Li, and P. K. A. Wai  »View Author Affiliations


Journal of Optical Networking, Vol. 3, Issue 10, pp. 742-757 (2004)
http://dx.doi.org/10.1364/JON.3.000742


View Full Text Article

Acrobat PDF (198 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Feature Issue on Optical Interconnection Networks (OIN)

Two-dimensional (2-D) microelectromechanical system (MEMS) optical switches have the merits of easy fabrication and high reliability. Since the optical signal loss is mainly proportional to the length of signaling paths in the switches, current 2-D MEMS optical switches that use a crossbar structure have a rather limited number of ports. For larger 2-D MEMS optical switches, we may use nonrectangular topology switching fabrics to shorten the internal signaling path or to recollimate the optical signal segment by segment inside the switches. We discuss these approaches from the aspect of implementation and routing control complexity.

© 2004 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Optical Interconnection Networks

History
Original Manuscript: August 16, 2004
Revised Manuscript: August 14, 2004
Published: September 29, 2004

Virtual Issues
Optical Interconnection Networks (2004) Journal of Optical Networking

Citation
Victor Li, Chun Yin Li, and P. K. A. Wai, "Alternative structures for two-dimensional MEMS optical switches [Invited]," J. Opt. Netw. 3, 742-757 (2004)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jon-3-10-742


Sort:  Journal  |  Reset

References

  1. A. Banerjee, L. Drake, L. Lang, B. Turner, D. Awduche, L. Berger, K. Kompella, and Y. Rekhter, "Generalized multiprotocol label switching: an overview of signaling enhancements and recovery techniques," IEEE Commun. Mag. 39, 144-151 (2001).
  2. See<a href="http://david.com.dtu.dk/">http://david.com.dtu.dk/</a>.
  3. C. Qiao and M. Yoo, "Optical burst switching (OBS)--a new paradigm for an optical Internet," J. High Speed Netw. 8, 69-84 (1999).
  4. A. Neukermans and R. Ramaswami, "MEMS technology for optical networking applications," IEEE Commun. Mag. 39, 62-69 (2001).
  5. L. Y. Lin and E. L. Goldstein, "Opportunities and challenges for MEMS in lightwave communications," J. Sel. Top. Quantum Electron. 8, 163-172 (2002).
  6. X. H. Ma and G. S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41, S16-S23 (2003).
  7. P. De Dobbelaere, K. Falta, and S. Globeckner, "Advances in integrated 2D MEMS-based solutions for optical network applications," IEEE Commun. Mag. 41, S16-S23, (2003).
  8. L.Y. Lin, E.L. Goldstein, and R.W. Tkach, "On the expandability of free-space micromachined optical cross connects," J. Lightwave Technol. 18, 482-489 (2000).
  9. R. Ryf, D. T. Neilson, and C. R. Giles, "Scalable micro mechanical optical crossconnects," in Micro- and Nano-optics for Optical Interconnection and Information Processing, M. R. Taghizadeh and H. Thienpont, eds., Proc. SPIE 4455, 51-58 (2001).
  10. B. Blau and K. Loesch, "The scalability of photonic switches," Comput. Rendus Phys. 4, 75-83 (2003).
  11. G. X. ShenT. H. Cheng, S. K. Bose, L. Chao, and Y. C. Teck "Architectural design for multistage 2-D MEMS optical switches," J. Lightwave Technol. 20, 178-187 (2002).
  12. J. M. Simmons, A. A. M. Saleh, E. L. Goldstein, and L. Y. Lin, "Optical crossconnects of reduced complexity for WDM networks with bidirectional symmetry," IEEE Photon. Technol. Lett. 10, 819-921 (1998).
  13. L. Y. Lin, E. L. Goldstein, J. M. Simmons, and R. W. Tkach, "High-density micromachined Polygon optical crossconnects exploiting network connect-symmetry," IEEE Photon. Technol. Lett. 10, 1425-1427 (1998).
  14. T. W. Yeow, K. L. E. Law, and A. A. Goldenberg, "SOI-based 2-D MEMS L-switching matrix for optical networking," J. Sel. Top. Quantum Electron. 9, 603-613 (2003).
  15. G .X. Shen, T. H. Cheng, C. Lu, T. Y. Chai, and S. K. Bose, "A novel rearrangeable non-blocking architecture for 2D MEMS optical space switches," Opt. Netw. Mag. 3, 70-78 (2002).
  16. T. Y. Chai, T. H. Cheng, S. K. Bose, C. Lu, and G. X. Shen, "Array interconnection for rearrangeable 2-D MEMS optical switch," J. Lightwave Technol. 21, 1134-1140 (2003).
  17. S. Gloeckner, A. Husain, and L. Fan, "Optomechanical matrix switches including collimator arrays," WIPO patent 0073842 (7 December 2000).
  18. C. Y. Li, G. M. Li, V. O. K. Li, P. K. A. Wai, H. Xie, and X. C. Yuan, "Using 2×2 switching modules to build large 2-D MEMS optical switches," in Proceedings of IEEE Global Telecommunications Conference (IEEE, New York, 2003), pp. 2789-2802.
  19. D. Dragoman and M. Dragoman, "Micro/nano-optoelectromechanical systems," Prog. Quantum Electron. 29, 229-250 (2001).
  20. R. A. Spanke, "Architectures for guided-wave optical space switching systems," IEEE Commun. Mag. 25, 42-48 (1987).
  21. R.A. Spanke and V.E. Beneš, "N-stage planar optical permutation network," Appl. Opt. 26, 1226-1229 (1987).
  22. V.E. Beneš, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic, New York, 1965).
  23. B. E. A. Saleh and M.C. Teich, Fundamentals of Photonics (Wiley New York, 1991).
  24. N. Lindlein, "Simulation of micro-optical systems including microlens arrays," J. Opt. A: Pure Appl. Opt. 4, S1-S9 (2002).
  25. S. P. Han, J. T. Kim, S. W. Jung, S. H. Ahn, C. G. Choi, and M. Y. Jeong, "A reflective curved mirror with low coupling loss for optical interconnection," IEEE Photon. Technol. Lett. 16, 185-187 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited