OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Richard A. Linke
  • Vol. 4, Iss. 9 — Sep. 1, 2005
  • pp: 549–560

Satellite-based quantum communication terminal employing state-of-the-art technology

Martin Pfennigbauer, Markus Aspelmeyer, Walter Leeb, Guy Baister, Thomas Dreischer, Thomas Jennewein, Gregor Neckamm, Josep Perdigues, Harald Weinfurter, and Anton Zeilinger  »View Author Affiliations

Journal of Optical Networking, Vol. 4, Issue 9, pp. 549-560 (2005)

View Full Text Article

Acrobat PDF (461 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Feature Issue on Optical Wireless Communications (OWC)

We investigate the design and the accommodation of a quantum communication transceiver in an existing classical optical communication terminal on board a satellite. Operation from a low earth orbit (LEO) platform (e.g., the International Space Station) would allow transmission of single photons and pairs of entangled photons to ground stations and hence permit quantum communication applications such as quantum cryptography on a global scale. Integration of a source generating entangled photon pairs and single-photon detection into existing optical terminal designs is feasible. Even more, major subunits of the classical terminals such as those for pointing, acquisition, and tracking as well as those providing the required electronic, thermal, and structural backbone can be adapted so as to meet the quantum communication terminal needs.

© 2005 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(350.6090) Other areas of optics : Space optics

ToC Category:
Optical Wireless Communications

Original Manuscript: April 19, 2005
Revised Manuscript: April 15, 2005
Published: August 17, 2005

Virtual Issues
Optical Wireless Communications (2005) Journal of Optical Networking

Martin Pfennigbauer, Markus Aspelmeyer, Walter Leeb, Guy Baister, Thomas Dreischer, Thomas Jennewein, Gregor Neckamm, Josep Perdigues, Harald Weinfurter, and Anton Zeilinger, "Satellite-based quantum communication terminal employing state-of-the-art technology," J. Opt. Netw. 4, 549-560 (2005)

Sort:  Journal  |  Reset


  1. D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
  2. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
  3. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 8420, 4729-4732 (2000).
  4. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New J. Phys. 4, 43.1-43.14 (2002).
  5. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step torwards global key distribution," Nature 419, 450 (2002).
  6. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41.1-41.8 (2002).
  7. A. Poppe, A. Fedrizzi, T. Lörunser, O. Maurhardt, R. Ursin, H. R. Böhm, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, "Practical quantum key distribution with polarization entangled photons," Opt. Express 12, 3865-3871 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3865">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3865</a>.
  8. J. G. Rarity, P. R. Tapster, P. M. Gorman, and P. Knight, "Ground to satellite secure key exchange using quantum cryptography," New J. Phys. 4, 82.1-82.21 (2002).
  9. M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. R. Leeb, and A. Zeilinger, "Long-distance quantum communication with entangled photons using satellites," IEEE J. Sel. Topics Quantum Electron. 9, 1541-1551 (2003).
  10. J. E. Nordolt, R. J. Hughes, G. L. Morgan, C. G. Peterson, and C. C. Wipf, "Present and future free-space quantum key distribution," in Free-Space Laser Communication Technologies XIV, Proc. SPIE 4635, 116-126 (2002).
  11. W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, "Practical free-space quantum key distribution over 1 km," Phys. Rev. Lett. 81, 3051-3301 (1998).
  12. W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, and C. G. Peterson, "Daylight quantum key distribution over 1.6 km," Phys. Rev. Lett. 84, 5652-5655 (2000).
  13. M. Aspelmeyer, H. R. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, "Long-distance free-space distribution of quantum entanglement," Science 301, 621-623 (2003).
  14. C.-Z. Peng, T. Yang, X.-H. Bao, J.-Z., X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km" (2004)., <a href="http://arxiv.org/abs/quant-ph/0412218">http://arxiv.org/abs/quant-ph/0412218</a>.
  15. K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, "Distributing entanglement and single photons through an intra-city, free-space quantum channel," Optics Express 13, 202-209 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-202">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-202</a>.
  16. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
  17. G. C. Baister, Ch. Haupt, E. Fischer, and K. Pribil, "Optical communication crosslink terminals for future broadband satellite applications," in Proceedings of the 18th AIAA International Communication Satellite Systems Conference (April 2000), Vol. 20, p. 1263.
  18. M. Pfennigbauer, W. R. Leeb, G. Neckamm, M. Aspelmeyer, T. Jennewein, F. Tiefenbacher, A. Zeilinger, G. Baister, K. Kudielka, T. Dreischer, and H. Weinfurter, "Accommodation of a quantum communication transceiver in an optical terminal (ACCOM): final report," European Space Agency Contract Report, ESTEC, Contract 17766∕03∕NL∕PM (2005).
  19. Electro Optics Handbook, a compendium of useful information and technical data (Radio Corporation of America, 1968).
  20. For the e−2 beam divergence of a Gaussian beam, θG, one obtains a value of approx 2×0.9λ∕DT from Fig. 9 of Ref. 25. To convert this into the equivalent beam divergence, defined as yielding the same on-axis intensity as a beam with a top-hat profile carrying identical power, one easily finds that a beam with a Gaussian profile and a full e−2 beam divergence θG produces the same on-axis intensity as a beam with top-hat profile and full beam divergence θT=θG∕2. We thus arrive at a beam divergence of θT=(2×0.9∕2)λ∕DT=1.27λ∕DT.
  21. D. L. Fried, "Optical resolution through a randomly inhomogeneous medium for very long and very short exposures," J. Op. Soc. Am. 56, 1372-1379 (1966).
  22. M. Pfennigbauer and W. R. Leeb, "Optical telescopes for intersatellite link--feasibility study," ESTEC, Contract No. 15872∕01 (Subcontract No. ML∕15872∕sub2 with Media Lario S.r.l.), Trade-Off and Goals for Laser Communication Terminal Systems (2002).
  23. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 1998).
  24. W. Carey, D. Isakeit, M. Heppener, K. Knott, and J. Feustel-Bechl, "The International Space Station European users guide," Tech. Rep., European Space Agency, ISS User Information Centre (MSM-GAU), ESTEC (2001).
  25. B. J. Klein and J. J. Degnan, "Optical antenna gain. 1. Transmitting antennas," Appl. Opt. 13, 2134-2141 (1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited