OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Richard A. Linke
  • Vol. 6, Iss. 1 — Jan. 1, 2007
  • pp: 25–47

Integrated silicon photonics for optical networks [Invited]

Assia Barkai, Yoel Chetrit, Oded Cohen, Rami Cohen, Nomi Elek, Eyal Ginsburg, Stas Litski, Albert Michaeli, Omri Raday, Doron Rubin, Gadi Sarid, Nahum Izhaky, Mike Morse, Olufemi Dosunmu, Ansheng Liu, Ling Liao, Haisheng Rong, Ying-hao Kuo, Shengbo Xu, Drew Alduino, Jeffrey Tseng, Hai-Feng Liu, and Mario Paniccia  »View Author Affiliations


Journal of Optical Networking, Vol. 6, Issue 1, pp. 25-47 (2007)
http://dx.doi.org/10.1364/JON.6.000025


View Full Text Article

Acrobat PDF (1630 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

<p><a href="http://www.osa-jon.org/virtual_issue.cfm?vid=28">Feature Issue on Nanoscale Integrated Photonics for Optical Networks</a></p>Fiber optic communication is well established today in long-haul, metro, and some data communication segments. Optical technologies continue to penetrate more into the network owing to the increase in bandwidth demands; however, they still suffer from too expensive solutions. Silicon photonics is a new technology developing integrated photonic devices and circuits based on the unique silicon material that has already revolutionized the face of our planet through the microelectronics industry. This paper reviews silicon photonics technology at Intel, showing how using the same mature, low-cost silicon CMOS technology we develop many of the building blocks required in current and future optical networks. After introducing the silicon photonics motivation for networks, we discuss the various devices--waveguides, modulators, Raman amplifiers and lasers, photodetectors, optical interconnects, and photonic crystals--from the points of view of applications, principle of operation, process development, and performance results.

© 2006 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(130.3120) Integrated optics : Integrated optics devices
(220.4610) Optical design and fabrication : Optical fabrication
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Nanoscale Integrated Photonics for Optical Networks

History
Original Manuscript: August 8, 2006
Manuscript Accepted: October 1, 2006
Published: December 13, 2006

Virtual Issues
Nanoscale Integrated Photonics for Optical Networks (2006) Journal of Optical Networking

Citation
Assia Barkai, Yoel Chetrit, Oded Cohen, Rami Cohen, Nomi Elek, Eyal Ginsburg, Stas Litski, Albert Michaeli, Omri Raday, Doron Rubin, Gadi Sarid, Nahum Izhaky, Mike Morse, Olufemi Dosunmu, Ansheng Liu, Ling Liao, Haisheng Rong, Ying-hao Kuo, Shengbo Xu, Drew Alduino, Jeffrey Tseng, Hai-Feng Liu, and Mario Paniccia, "Integrated silicon photonics for optical networks [Invited]," J. Opt. Netw. 6, 25-47 (2007)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jon-6-1-25


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. A. Soref, ''Silicon based optoelectronics,'' Proc. IEEE 81, 1687-1706 (1993). [CrossRef]
  2. M. Paniccia, M. Morse, and M. Salib, ''Integrated photonics,'' in Silicon Photonics, L.Pavesi and D.J.Lockwood, eds. (Springer, 2004), pp. 51-88.
  3. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, ''An all-silicon Raman laser,'' Nature 433, 292-294 (2005). [CrossRef]
  4. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, ''A continuous-wave Raman silicon laser,'' Nature 433, 725-728 (2005). [CrossRef]
  5. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, ''Raman gain and nonlinear optical absorption measurement in a low loss silicon waveguide,'' Appl. Phys. Lett. 85, 2196-2198 (2004). [CrossRef]
  6. M. J. Kobrinsky, B. A. Block, J. F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko, F. Robertson, S. List, I. Young, and K. Cadien, ''On chip optical interconnects,'' Intel Technol. J. 8, 129-141 (2004).
  7. L. Wooten, L. Russell, L. Stone, W. Miles, and E. M. Bradley, ''Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,'' J. Lightwave Technol. 14, 2530-2536 (1996). [CrossRef]
  8. M. Kuznetsov, ''Cascaded coupler Mach-Zehnder channel dropping filters for wavelength-division-multiplexed optical systems,'' J. Lightwave Technol. 12, 226-230 (1994). [CrossRef]
  9. C. R. Doerr, S. Chandrasekhar, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, ''Tunable dispersion compensator with integrated wavelength locking,'' in Optical Fiber Communication Conference Technical Digest. OFC/NFOEC (Optical Society of America, 2005), paper PDP9, Vol. 5, p. 3.
  10. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, ''A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,'' Nature 427, 615-618 (2004). [CrossRef]
  11. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, ''High speed silicon Mach-Zehnder modulator,'' Opt. Express 13, 3129-3135 (2005). [CrossRef]
  12. L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, ''Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,'' J. Electron. Mater. 29, 1380-1386 (2000).
  13. S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, ''Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,'' IEEE Electron. Devices. Lett. 20, 194-196 (1999).
  14. L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, ''Phase modulation efficiency and transmission loss of silicon optical phase shifters,'' IEEE J. Quantum Electron. 41, 250-257 (2005).
  15. J. P. Russell, ''Raman scattering in silicon,'' Appl. Phys. Lett. 6, 223-224 (1965). [CrossRef]
  16. J. M. Ralston and R. K. Chang, ''Spontaneous-Raman-scattering efficiency and stimulated scattering in silicon,'' Phys. Rev. B 2, 1858-1862 (1970). [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  18. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, ''Observation of Raman emission in silicon waveguides at 1.54μm,'' Opt. Express 10, 1305-1313 (2002).
  19. H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, O. Cohen, and O. Raday, ''Monolithic integrated Raman silicon laser,'' Opt. Express 14, 6705-6712 (2006). [CrossRef]
  20. T. K. Liang and H. K. Tsang, ''Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,'' Appl. Phys. Lett. 84, 2745-2747 (2004). [CrossRef]
  21. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, ''Raman gain and nonlinear optical absorption measurement in a low loss silicon waveguide,'' Appl. Phys. Lett. 85, 2196-2198 (2004). [CrossRef]
  22. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, ''Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,'' Opt. Express 12, 4261-4267 (2004). [CrossRef]
  23. Q. Xu, V. Almeida, and M. Lipson, ''Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,'' Opt. Express 12, 4437-4442 (2004). [CrossRef]
  24. O. Boyraz and B. Jalali, ''Demonstration of a silicon Raman laser,'' Opt. Express 12, 5269-5273 (2004). [CrossRef]
  25. R. Jones, H. Rong, A. Liu, A. W. Fang, M. Paniccia, D. Hak, and O. Cohen, ''Net continuous-wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,'' Opt. Express , 13, 519-525 (2005). [CrossRef]
  26. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, ''An all-silicon Raman laser,'' Nature 433, 292-294 (2005). [CrossRef]
  27. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, ''A continuous-wave Raman silicon laser,'' Nature 433, 725-728 (2005). [CrossRef]
  28. W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, ''Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,'' Appl. Phys. Lett. 85, 5523-5525 (2004). [CrossRef]
  29. D. M. Baney and W. V. Sorin, in Fiber Optic Test and Measurement, D.Derickson, ed. (Prentice-Hall, 1998), pp. 169-219.
  30. I. Kimukin, N. Biyikli, B. Butun, O. Aytur, M. S. Ünlü, and E. Ozbay, ''InGaAs-based high-performance p-i-n photodiodes,'' IEEE Photon. Technol. Lett. 14, 366-368 (2002). [CrossRef]
  31. J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. Cannon, S. Jongthammanurak, D. Danielson, L. C. Kimerling, J. Chen, F. O. Ilday, F. X. Kartner, and J. Yasaitis, ''High Performance, tensile-strained Ge p-i-n photodetectors on a Si platform,'' Appl. Phys. Lett. 87, 103501-103503 (2005). [CrossRef]
  32. M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, ''Ge-on-Si vertical incidence photodiodes with 39GHz bandwidth,'' IEEE Photon. Technol. Lett. 17, 1510-1512 (2005). [CrossRef]
  33. P. Laitinen, G. Tiourine, V. Touboltsev, and J. Räisänen, ''Detection system for depth profiling of radiotracers,'' Nucl. Instrum. Methods Phys. Res. B 190, 183-187 (2002). [CrossRef]
  34. G. L. McVay and A. R. DuCharme, ''The diffusion of germanium in silicon,'' J. Appl. Phys. 44, 1409-1410 (1973). [CrossRef]
  35. K. Shiraishi and C. S. Tsai, ''A micro light-beam spot-size converter using a hemicylindrical GRIN-slab tip with high-index contrast,'' J. Lightwave Technol. 23, 3821-3826 (2005).
  36. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, ''An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,'' IEEE J. Quantum Electron. 38, 949-955 (2002). [CrossRef]
  37. M. Uekawa, D. Shimura, K. Kotani, Y. Maeno, H. Sasaki, and T. Takamori, ''Expanded application of silicon V-groove platform with silicon microlens,'' in Optical Fiber Communications Conference 2003 (Optical Society of America, 2003), pp. 75-76.
  38. S. Hiramatsu and M. Kinoshita, ''Three-dimensional waveguide arrays for coupling between fiber-optic connectors and surface-mounted optoelectronic devices,'' J. Lightwave Technol. 23, 2733-2739 (2005).
  39. J. H. Wu, J. Scholvin, and J. A. del Alamo, ''A through-wafer interconnect in silicon for RFICs,'' IEEE Trans. Electron. Devices 51, 1765-1772 (2004).
  40. L. S. Huang, S. S. Lee, E. Motamedi, M. C. Wu, and C. J. Kim, ''MEMS packaging for micro mirror switches,'' in 48th Electronic Components and Technology Conference 1998 (IEEE, 1998), pp. 592-597.
  41. D. Xianfeng, D. Zhang, and T. Lee, ''Chip level packaging for MEMS using silicon cap,'' in IEEE Electronic Manufacturing Technology Symposium (IEEE, 2004), pp. 342-344.
  42. M. A. Deeds and P. A. Sandborn, ''MOEMS chip-level optical fiber interconnect,'' IEEE Trans. Adv. Packag. 28, 612-618 (2005).
  43. J. D. Joannopolous, R. Meade, and J. Winn, Photonic Crystals--Molding the Flow of Light (Princeton U. Press, 1995).
  44. E. Yablonovitch, ''Photonic band-gap structures,'' J. Opt. Soc. Am. B 10, 283-296 (1993).
  45. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, ''Waveguides, resonators and their coupled elements in photonic crystal slabs,'' Opt. Express 12, 1551-1561 (2004). [CrossRef]
  46. E. Dulkeith, S. J. McNab, and Yu. A. Vlasov, ''Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,'' Phys. Rev. B 72, 115102-115110 (2005). [CrossRef]
  47. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, ''High-Q photonic nanocavity in a two-dimensional photonic crystal,'' Nature 425, 944-947 (2003). [CrossRef]
  48. Yu. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, ''Active control of slow light on a chip with photonic crystal waveguides,'' Nature 438, 65-69 (2005). [CrossRef]
  49. W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, ''Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography,'' IEEE J. Sel. Areas Commun. 8, 928-935 (2002).
  50. Yu. A. Vlasov, N. Moll, and S. J. McNab, ''Mode mixing in asymmetric double-trench photonic crystal waveguides,'' J. Appl. Phys. 95, 4538-4544 (2004). [CrossRef]
  51. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, ''Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,'' Phys. Rev. B 72, 161318-4 (2005). [CrossRef]
  52. M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, ''Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography,'' Opt. Express 14, 2441-2445 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited