OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Richard A. Linke
  • Vol. 6, Iss. 2 — Feb. 1, 2007
  • pp: 90–101

Systematic investigation of misalignment effects at junctions between feeder waveguide and photonic crystal channel waveguide

Marco Gnan, Iraklis Ntakis, Pierre Pottier, Richard M. De La Rue, and Paolo Bassi  »View Author Affiliations


Journal of Optical Networking, Vol. 6, Issue 2, pp. 90-101 (2007)
http://dx.doi.org/10.1364/JON.6.000090


View Full Text Article

Acrobat PDF (887 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

<p><a href="http://www.osa-jon.org/virtual_issue.cfm?vid=28">Feature Issue on Nanoscale Integrated Photonics for Optical Networks</a></p>The coupling between two different guiding elements, a ridge waveguide and a photonic crystal channel waveguide (obtained by a single line defect in the crystal), is investigated both computationally and experimentally. The study concentrates on the effects that different widths for the ridge waveguide, as well as positions with respect to the channel waveguide, have on the coupling efficiency--thus allowing the assessment of the sensitivity to drift effects that can occur in fabrication--and the optimal design parameters. Characterization of devices fabricated in GaAs/AlGaAs epitaxial waveguide material shows good overall agreement with the simulated trends for all the configurations of the junction considered. On the other hand, the trends from experiments also demonstrate reduced dependency of transmission on mismatch, by comparison with simulations. Finally, the configuration, which allows optimum coupling and transmission (98%), is found to be verified by both simulation and characterization.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:
Nanoscale Integrated Photonics for Optical Networks

History
Original Manuscript: August 15, 2006
Revised Manuscript: November 9, 2006
Manuscript Accepted: November 9, 2006
Published: January 9, 2007

Virtual Issues
Nanoscale Integrated Photonics for Optical Networks (2006) Journal of Optical Networking

Citation
Marco Gnan, Iraklis Ntakis, Pierre Pottier, Richard M. De La Rue, and Paolo Bassi, "Systematic investigation of misalignment effects at junctions between feeder waveguide and photonic crystal channel waveguide," J. Opt. Netw. 6, 90-101 (2007)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jon-6-2-90


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, ''Inhibited spontaneous emission in solid-state physics and electronics,'' Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef]
  2. S. John, ''Strong localization of photons in certain disordered dielectric superlattices,'' Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef]
  3. T. F. Krauss and R. M. De la Rue, ''Photonic crystals in the optical regime--past, present and future,'' Prog. Quantum Electron. 23, 51-96 (1999). [CrossRef]
  4. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, ''Novel applications of photonic band-gap materials--low-loss bends and high Q-cavities,'' J. Appl. Phys. 75, 4753-4755 (1994). [CrossRef]
  5. J. Arentoft, T. Sondergaard, M. Kristensen, A. Boltasseva, M. Thorhauge, and L. Frandsen, ''Low-loss silicon-on-insulator photonic crystal waveguides,'' Electron. Lett. 38, 274-275 (2002). [CrossRef]
  6. W. Kuang, C. Kim, A. Stapleton, W. J. Kim, and J. D. O'Brien, ''Calculated out-of-plane transmission loss for photonic crystal slab waveguides,'' Opt. Lett. 28, 1781-1783 (2003).
  7. A. Shinya, M. Notomi, E. Kuramochi, T. Shoji, T. Watanabe, T. Tsuchizawa, K. Yamada, and H. Morita, ''Functional components in SOI photonic crystal slabs,'' in Photonic Crystal Materials and Devices, A. Adibi, A. Scherer, S. Y. Lin, eds., Proc. SPIE 5000, 104-117 (2003).
  8. S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, ''Linear waveguides in photonic-crystal slabs,'' Phys. Rev. B 62, 8212-8222 (2000). [CrossRef]
  9. S. Boscolo, M. Midrio, and T. F. Krauss, ''Y junctions in photonic crystal channel waveguides: high transmission and impedance matching,'' Opt. Lett. 27, 1001-1003 (2002).
  10. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, ''Design and fabrication of silicon photonic crystal optical waveguides,'' J. Lightwave Technol. 18, 1402-1411 (2000). [CrossRef]
  11. A. Talneau, M. Mulot, S. Anand, and P. Lalanne, ''Compound cavity measurement of transmission and reflection of a tapered single-line photonic-crystal waveguide,'' Appl. Phys. Lett. 82, 2577-2579 (2003). [CrossRef]
  12. E. A. Camargo, H. M. H. Chong, and R. M. De la Rue, ''2D Photonic crystal thermo-optics witch based on AlGaAs/GaAs epitaxial structure,'' Opt. Express 12, 588-592 (2004). [CrossRef]
  13. M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O'Brien, P. D. Dapkus, and W. K. Marshall, ''Two-dimensional photonic crystal Mach-Zehnder interferometers,'' Appl. Phys. Lett. 84, 460-462 (2004). [CrossRef]
  14. Y. Xu, R. K. Lee, and A. Yariv, ''Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry,'' Opt. Lett. 25, 755-757 (2000).
  15. A. Mekis and J. D. Joannopoulos, ''Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguide,'' J. Lightwave Technol. 19, 861-865 (2001). [CrossRef]
  16. M. E. Potter and R. W. Ziolkowski, ''Two compact structures for perpendicular coupling of optical signals between dielectric and photonic crystal waveguides,'' Opt. Express 10, 691-698 (2002).
  17. T. D. Happ, M. Kamp, and A. Forchel, ''Photonic crystal tapers for ultracompact mode conversion,'' Opt. Lett. 26, 1102-1104 (2001). [CrossRef]
  18. P. Sanchis, J. Marti, B. Luyssaert, P. Dumon, P. Bienstman, and R. Baets, ''Analysis and design of efficient coupling in photonic crystal circuits,'' Opt. Quantum Electron. 37, 133-147 (2005). [CrossRef]
  19. P. Pottier, I. Ntakis, and R. M. De La Rue, ''Photonic crystal continuous taper for low-loss direct coupling into 2D photonic crystal channel waveguides and further device functionality,'' Opt. Commun. 223, 339-347 (2003). [CrossRef]
  20. N. Moll and G. L. Bona, ''Comparison of three-dimensional photonic crystal slab waveguides with two-dimensional photonic crystal waveguides: efficient butt coupling into these photonic crystal waveguides,'' J. Appl. Phys. 93, 4986-4991 (2003). [CrossRef]
  21. P. Sanchis, P. Bienstman, B. Luyssaert, R. Baets, and J. Marti, ''Analysis of butt coupling in photonic crystals,'' IEEE J. Quantum Electron. 40, 541-550 (2004). [CrossRef]
  22. E. Miyai and S. Noda, ''Structural dependence of coupling between a two-dimensional photonic crystal waveguide and a wire waveguide,'' J. Opt. Soc. Am. B 21, 67-72 (2004). [CrossRef]
  23. M. Badieirostami, B. Momeni, M. Soltani, A. Adibi, Y. Xu, and R. K. Lee, ''Investigation of physical mechanisms in coupling photonic crystal waveguiding structures,'' Opt. Express 12, 4781-4789 (2004). [CrossRef]
  24. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, ''Active control of slow light on a chip with photonic crystal waveguides,'' Nature 438, 65-69 (2005). [CrossRef]
  25. Y. A. Vlasov and S. J. McNab, ''Coupling into the slow light mode in slab-type photonic crystal waveguides,'' Opt. Lett. 31, 50-52 (2006). [CrossRef]
  26. Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, ''Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,'' Appl. Phys. Lett. 82, 1661-1663 (2003). [CrossRef]
  27. M. Gnan, G. Bellanca, H. M. H. Chong, P. Bassi, and R. M. De la Rue, ''Modelling of photonic wire Bragg gratings,'' Opt. Quantum Electron. 38, 133-148 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited