OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Keren Bergman
  • Vol. 7, Iss. 10 — Oct. 1, 2008
  • pp: 876–894

Optical packet routers: how they can efficiently and cost-effectively scale to petabits per second [Invited]

A. Stavdas, C. (T) Politi, T. Orphanoudakis, and A. Drakos  »View Author Affiliations

Journal of Optical Networking, Vol. 7, Issue 10, pp. 876-894 (2008)

View Full Text Article

Acrobat PDF (835 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Today's data-centric networks are becoming progressively dynamic with respect to the transported traffic volume, to the spatial and temporal variations of traffic patterns, and to the subsequent interconnection request patterns. Optical packet routers (OPRs) aim to provide a viable answer to these requirements by rendering the optical layer adaptable, reconfigurable at will, and cost-effective by means of statistical multiplexing of the network resources while satisfying end-to-end quality-of-service requirements. We study the role of OPRs in two different network approaches: an OPR adopting the legacy of a telecommunication solution and a solution pertinent to the role and the functionality of an IP world. To benchmark the two scenarios, a multilayer, multigranular OPR architecture is presented and its potential to cost-effectively scale toward petabit-per-second throughput is justified by means of physical layer performance and power consumption estimations for each case. Furthermore, the blocking and frame-loss performance of the proposed OPRs is presented, proving the viability of the proposed solutions.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4250) Fiber optics and optical communications : Networks

ToC Category:
Optical Routers

Original Manuscript: June 26, 2008
Revised Manuscript: August 28, 2008
Manuscript Accepted: August 28, 2008
Published: September 30, 2008

Virtual Issues
(2009) Advances in Optics and Photonics
Optical Routers (2008) Journal of Optical Networking

A. Stavdas, C. (T) Politi, T. Orphanoudakis, and A. Drakos, "Optical packet routers: how they can efficiently and cost-effectively scale to petabits per second [Invited]," J. Opt. Netw. 7, 876-894 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Deloitte TMT, Telecommunications Predictions 2007 (Deloitte, 2007).
  2. E. Desurvire, “Capacity demands and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol. 24, 4697-4710 (2006). [CrossRef]
  3. A. Manzalini and A. Stavdas, “A service and knowledge ecosystem for Telco3.0-Web3.0 applications,” in Proceedings of the 3rd International Conference on Internet and Web Applications and Services (ICIW 2008) (IARIA, 2008).
  4. W. Wei, Q. Zeng, Y. Ouyang, and D. Lomone, “High-performance hybrid-switching optical router for IP over WDM integration,” Photonic Network Commun. 9, 139-155 (2005).
  5. S. J. Ben Yoo, “Optical packet and burst switching technologies for future photonic Internet,” J. Lightwave Technol. 24, 4468-4492 (2006). [CrossRef]
  6. S. Tucker, “The role of optics and electronics in high-capacity routers,” J. Lightwave Technol. 24, 4655-4673 (2006). [CrossRef]
  7. Cisco CRS-1 Multishelf System available at http://www.cisco.com/.
  8. D. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728-749 (2000). [CrossRef]
  9. S. Uhlig and M. Robertsson, “Limitations to and solutions for optical loss in optical backplanes,” J. Lightwave Technol. 24, 1710-1724 (2006). [CrossRef]
  10. K. Sato, N. Yamanaka, Y. Takigawa, M. Koga, S. Okamoto, K. Shiomoto, E. Oki, and W. Imajuku, “GMPLS-based photonic multilayer router (Hikari router) architecture, an overview of traffic engineering and signaling technology,” IEEE Commun. Mag. 40(3), 96-101 (2002). [CrossRef]
  11. D. Bishop, C. Giles, and G. Austin, “The Lucent LambdaRouter: MEMS technology of the future here today,” IEEE Commun. Mag. 40(3), 75-79 (2002). [CrossRef]
  12. G. Hjalmtysson, J. Yates, S. Chaudhuri, and A. Greenberg, “Smart routers--simple optics: an architecture for the optical internet,” J. Lightwave Technol. 18, 1880-1891 (2000).
  13. L. Dittman, C. Develder, D. Chiaroni, F. Neri, F. Callegati, W. Koerber, A. Stavdas, M. Renaud, A. Rafel, J. Pareta, N. Leligou, L. Dembeck, B. Mortensen, M. Pickavet, N. Le Sauze, M. Mahony, B. Berde, and G. Eilenberger, “The European IST Project DAVID: a viable approach towards optical packet switching” IEEE J. Sel. Areas Commun. 21, 1026-1040 (2003). [CrossRef]
  14. Alcatel 1674 Lambda Gate, Technical Description, 3AL 93106 AAAA Ed. 05.
  15. H. C. Leligou, A. Stavdas, J. Angelopoulos, G. Eilenberger, and L. Dembeck, “Hybrid burst/packet switching architectures from IP NOBEL,” Proc. SPIE 6388, 63880C (2006).
  16. Z. Lu, D. Hunter, and I. Henning, “Contention resolution in core optical packet switches through electronic traffic smoothing and scheduling at the network edge,” J. Lightwave Technol. 24, 4828-4837 (2006). [CrossRef]
  17. H. Chao, K. Deng, and Z. Jing, “PetaStar: a petabit photonic packet switch,” IEEE J. Sel. Areas Commun. 21, 1096-1112 (2003).
  18. D. Boettle, M. Burzio, P. Cinato, G. Eilenberger, J.-B. Jacob, T. Martinson, F. Masetti, A. Mcguire, M. Sotom, P. Vogel, and J. Benoit, “ATMOS (ATM Optical Switching)--system perspective,” Fiber Integr. Opt. 15, 267-279 (1996).
  19. D. Blumenthal, P. R. Prucnal, and J. R. Sauer, “Photonic packet switches: architecture and experimental implementations,” Proc. IEEE 82, 761-761 (1994).
  20. G. Hill, “A wavelength routing approach to optical communication networks,” Br. Telecommun. Technol. J. 6(3), 24-31 (1988).
  21. P. Gambini, M. Renaud, C. Guillemot, F. Callegati, I. Andonovic, B. Bostica, D. Chiaroni, G. Corazza, S. L. Danielsen, P. Gravey, P. B. Hansen, M. Henry, C. Janz, A. Kloch, R. Krahenbuhl, C. Raffaelli, M. Schilling, A. Talneau, and L. Zucchelli, “Transparent optical packet switching: network architecture and demonstrators in the KEOPS project,” IEEE J. Sel. Areas Commun. 16, 1245-1259 (1998). [CrossRef]
  22. E. Kehayas, D. Tsiokos, P. Bakopoulos, D. Apostolopoulos, D. Petrantonakis, L. Stampoulidis, A. Poustie, R. McDougall, G. Maxwell, Y. Liu, S. Zhang, H. J. S. Dorren, J. Seoane, P. V. Holm-Nielsen, P. Jeppesen, and H. Avramopoulos, “40-Gb/s all-optical processing systems using hybrid photonic integration technology,” J. Lightwave Technol. 24, 4903-4911 (2006). [CrossRef]
  23. E. Kehayas, K. Vyrsokinos, L. Stampoulidis, K. Christodoulopoulos, K. Vlachos, and H. Avramopoulos, “ARTEMIS: 40-Gb/s all-optical self-routing node and network architecture employing asynchronous bit and packet-level optical signal processing,” J. Lightwave Technol. 24, 2967-2977 (2006).
  24. N. Wada, H. Furukawa, and T. Miyazaki, “Prototype 160-Gbit/s/port optical packet switch based on optical code label processing and related technologies,” IEEE J. Sel. Top. Quantum Electron. 13, 1551-1559 (2007).
  25. N. Wada, G. Cincotti, S. Yoshima, N. Kataoka, and K. Kitayama, “Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers--part II: experiments and applications,” J. Lightwave Technol. 24, 113-121 (2006). [CrossRef]
  26. E. Varvarigos, “The 'packing' and the 'scheduling packet' switch architectures for almost all-optical lossless networks,” J. Lightwave Technol. 16, 1757-1767 (1998). [CrossRef]
  27. D. Wonglumsom, I. M. White, K. Shrikhande, M. S. Rogge, S. M. Gemelos, F.-T. An, Y. Fukashiro, M. Avenarious, and L. G. Kazovsky, “Experimental demonstration of an access point for HORNET--a packet over WDM multiple-access MAN,” J. Lightwave Technol. 18, 1709-1717 (2000).
  28. A. Stavdas, H.-C. Leligou, K. Kanonakis, C. Linardakis, and J. Angelopoulos, “A novel scheme for performing statistical multiplexing in the optical layer,” J. Opt. Netw. 4, 237-247 (2005). [CrossRef]
  29. J. D. Angelopoulos, K. Kanonakis, G. Koukouvakis, H. C. Leligou, C. Matrakidis, T. Orphanoudakis, and A. Stavdas, “An optical network architecture with distributed switching inside node clusters features improved loss, efficiency and cost,” J. Lightwave Technol. 25, 1138-1146 (2007). [CrossRef]
  30. A. Stavdas, T. Orphanoudakis, A. Lord, H. C. Lelligou, K. Kanonakis, C. Matrakidis, A. Drakos, and J. D. Angelopoulos, “Dynamic CANON: a scalable inter-cluster multi-domain core network,” IEEE Commun. Mag. 46(6), 138-144 (2008).
  31. A. Stavdas, C. Matrakidis, and C. Politi, “Migration of broadcast-and-select optical crossconnects from semi-static to dynamic reconfiguration and their physical layer modeling,” Opt. Commun. 280, 49-57 (2007).
  32. A. Stavdas, “Design of wavelength multiplexes/demultiplexes for WDM optical networks,” Ph.D. dissertation (University of London, 1995).
  33. A. Stavdas, H. Avramopoulos, E. N. Protonotarios, and J. E. Midwinter, “An OXC architecture suitable for high density WDM wavelength routed networks,” Photonic Network Commun. 1, 77-88 (1999).
  34. A. Stavdas, “Architectural solutions towards a 1,000 channel ultra-wideband WDM network,” Opt. Networks Mag. 2(1), 51-60 (2001).
  35. J. Tsai, S. Huang, D. Hah, and M. Wu, “1×N2 wavelength selective switch with two cross-scanning one-axis analog micromirror arrays in a 4-f optical system,” J. Lightwave Technol. 24, 897-903 (2006).
  36. L. Sahasrabuddhe and B. Kujherjee, “Light-trees: optical multicasting for improved performance in wavelength routed networks,” IEEE Commun. Mag. 37(2), 67-73 (1999). [CrossRef]
  37. A. Khalil, A. Hadjiantonis, M. Assi, A. Shami, G. Ellinas, and M. Ali, “Dynamic provisioning of low-speed unicast/multicast traffic demands in mesh-based WDM optical networks,” J. Lightwave Technol. 24, 681-693 (2006). [CrossRef]
  38. C. Raffaelli, M. Savi, and A. Stavdas, “Performance of scheduling algorithms in multi-stage optical packet switches with sparse wavelength converters,” in IEEE Global Telecommunications Conference (IEEE, 2006).
  39. http://www.polatis.com/.
  40. A. Stavdas, “Architectures, technology and strategies for gracefully evolving optical packet switching networks,” Opt. Networks Mag. 4(3), 92-107 (2003).
  41. A. Stavdas, S. Sygletos, M. O'Mahoney, H. Lee, and C. Matrakidis, “IST-DAVID: concept presentation and physical layer modeling of the metropolitan area network,” J. Lightwave Technol. 21, 372-383 (2003). [CrossRef]
  42. http://www.teemphotonics.com/.
  43. Chief Technology Officer, Teemphotonics, Meylan, France (personal communication).
  44. C. T. Politi, C. Matrakidis, A. Stavdas, D. Gavalas, and M. O'Mahony, “Single layer multigranular OXCs architecture with conversion capability and enhanced flexibility,” J. Opt. Netw. 5, 1002-1012 (2006). [CrossRef]
  45. SPEEDRouter vl. l Product Specification (Xilinx Inc., 2001).
  46. http://www.intel.com.
  47. http://www.ciphotonics.com.
  48. http://www.tmcnet.com/enews/100501a.htm.
  49. J. Hui, Switching and Traffic Theory for Integrated Broadband Networks (Kluwer, 1990).
  50. S. Yao, B. Mukherjee, S. J. B. Yoo, and S. Dixit, “A unified study of contention-resolution schemes in optical packet-switched networks,” J. Lightwave Technol. 21, 672-683 (2003). [CrossRef]
  51. V. Eramo, M. Listanti, and M. Spaziani, “Resource sharing in optical packet switches with limited-range wavelength converters,” J. Lightwave Technol. 23, 671-687 (2005). [CrossRef]
  52. V. Eramo, M. Listanti, and P. Pacifici, “A comparison study on the number of wavelength converters needed in synchronous and asynchronous all-optical switching architectures,” J. Lightwave Technol. 21, 340-355 (2003). [CrossRef]
  53. F. Farahmand, V. Vokkarane, and J. P. Jue, “Practical priority contention resolution for slotted optical burst switching networks,” presented at the 1st International Workshop on Optical Burst Switching (WOBS 2003), Dallas, Tex., October 13-18, 2003.
  54. C. Qiao and M. Yoo, “Optical burst switching (OBS)--a new paradigm for an optical internet,” J. High Speed Networks 8, 69-84 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited