OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Keren Bergman
  • Vol. 7, Iss. 3 — Mar. 1, 2008
  • pp: 198–214

Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks [Invited]

X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore  »View Author Affiliations


Journal of Optical Networking, Vol. 7, Issue 3, pp. 198-214 (2008)
http://dx.doi.org/10.1364/JON.7.000198


View Full Text Article

Acrobat PDF (917 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Focus Issue on Orthogonal-Frequency-Division Multiplexed Communications Systems and Networks

The impact of a wide range of different parameters of various components involved in optical modems using adaptively modulated optical orthogonal-frequency-division multiplexing (AMOOFDM) on the transmission performance of AMOOFDM signals is explored thoroughly, in single-channel, unamplified, multimode-fiber (MMF)-based, intensity modulation and direct detection (IMDD) transmission links. Practically available optimum component parameters are identified, based on which the AMOOFDM modems are optimized. It is shown that the optimized AMOOFDM modems enable a >70% increase in the capacity versus reach performance without compromising link loss margins, in comparison with that achieved without modem optimization. In addition, the validity of the identified optimum parameters and the feasibility of the optimized AMOOFDM modems are also statistically verified for implementation in the vast majority of installed MMF links. Statistical investigations show that the optimized AMOOFDM modems can support >50Gbits/s signal transmission over 300m in 99.5% of already installed MMF links with loss margins of >7dB. Furthermore, it is also confirmed statistically that the optimized AMOOFDM modems have excellent performance flexibility and great robustness to various fiber and/or system implementation-related impairments.

© 2008 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Focus: Orthogonal-Frequency-Division Multiplexed Communications Systems and Networks

History
Original Manuscript: November 16, 2007
Revised Manuscript: January 7, 2008
Manuscript Accepted: January 7, 2008
Published: February 22, 2008

Virtual Issues
Focus Issue: Orthogonal-Frequency-Division Multiplexed Communications Systems and Networks (2008) Journal of Optical Networking

Citation
X. Q. Jin, J. M. Tang, P. S. Spencer, and K. A. Shore, "Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks [Invited]," J. Opt. Netw. 7, 198-214 (2008)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jon-7-3-198


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Nielsen and S. Chandrasekhar, “OFC2004 workshop on optical and electronic mitigation of impairments,” J. Lightwave Technol. 23, 131-142 (2005).
  2. M. Franceschini, G. Bongiorni, G. Ferrari, R. Raheli, F. Meli, and A. Castoldi, “Fundamental limits of electronics signal processing in direct-detection optical communications,” J. Lightwave Technol. 25, 1742-1753 (2007). [CrossRef]
  3. P. Watts, R. Waegemans, M. Glick, P. Bayvel, and R. Killey, “An FPGA-based optical transmitter design using real-time DSP for advanced signal formats and electronic predistortion,” J. Lightwave Technol. 25, 3089-3099 (2007). [CrossRef]
  4. J. M. Gene, P. J. Winzer, S. Chandrasekhar, and H. Kogelnik, “Simultaneous compensation of polarization mode dispersion and chromatic dispersion using electronic signal processing,” J. Lightwave Technol. 25, 1735-1741 (2007).
  5. N. E. Jolley, H. Kee, R. Rickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550nm10Gb/s optical orthogonal frequency division multiplexed signal over 1000m of multimode fibre using a directly modulated DFB,” presented at the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, Calif., March 6-11, 2005, paper OFP3.
  6. J. M. Tang, P. M. Lane, and K. A. Shore, “High-capacity transmission of adaptively modulated optical OFDM signals over multimode fibres using directly modulated DFBs,” in The IEE Seminar on Optical Fibre Communications and Electronic Signal Processing (IEEE, 2005).
  7. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42, 587-589 (2006).
  8. A. J. Lowery, L. Du, and J. Armstrong, “Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems,” presented at the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, Calif., March 5-10, 2006, paper PDP39.
  9. H. C. Bao and W. Shieh, “Transmission of wavelength-division-multiplexed channels with coherent optical OFDM,” IEEE Photon. Technol. Lett. 19, 922-924 (2007). [CrossRef]
  10. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25, 131-138 (2007). [CrossRef]
  11. W. Shieh, “PMD-supported coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 19, 134-136 (2007). [CrossRef]
  12. A. J. Lowery, “Fibre nonlinearity mitigation in optical links that use OFDM for dispersion compensation,” IEEE Photon. Technol. Lett. 19, 1556-1558 (2007).
  13. S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “20Gb/s OFDM transmission over 4160km SSMF enabled by RF-pilot tone noise compensation,” presented at the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, Calif., March 26-30, 2007, paper PDP15.
  14. I. B. Djordjevic and B. Vasic, “100Gb/s transmission using orthogonal frequency-division multiplexing,” IEEE Photon. Technol. Lett. 18, 1576-1578 (2006).
  15. J. M. Tang and K. A. Shore, “30 Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fibre links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24, 2318-2327 (2006). [CrossRef]
  16. K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo, “40-Gb/s direct modulation with high extinction ratio operation of 1.3-μmInGaAlAs multiquantum well ridge waveguide distributed feedback lasers,” IEEE Photon. Technol. Lett. 19, 1436-1438 (2007).
  17. P. Pepeljugoski, S. E. Golowich, A. J. Ritger, P. Kolesar, and A. Risteski, “Modelling and simulation of next-generation multimode fibre links,” J. Lightwave Technol. 21, 1242-1255 (2003). [CrossRef]
  18. “The 10GBASE-LRM standard,” IEEE Standard 802.3aq (IEEE, 2006).
  19. L. Raddatz, I. H. White, D. G. Cunningham, and M. C. Nowell, “An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fibre links,” J. Lightwave Technol. 16, 324-331 (1998). [CrossRef]
  20. S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. Van den Boom, A. M. J. Koonen, and N. Hanik, “24-Gb/s transmission over 730m of multimode fibre by direct modulation of an 850-nm VCSEL using discrete multitone modulation,” presented at the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, Calif., March 26-30, 2007, paper PDP6.
  21. J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25, 787-798 (2007).
  22. J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptively modulated optical OFDM signals over multimode fibres using directly modulated DFBs,” J. Lightwave Technol. 24, 429-441 (2006). [CrossRef]
  23. J. M. Tang, P. M. Lane, and K. A. Shore, “Transmission performance of adaptively modulated optical OFDM signals in multimode fibre links,” IEEE Photon. Technol. Lett. 18, 205-207 (2006). [CrossRef]
  24. X. J. Gu, W. Mohammed, and P. W. Smith, “Demonstration of all-fiber WDM for multimode fiber local area networks,” IEEE Photon. Technol. Lett. 18, 244-246 (2006).
  25. K. Balemarthy, A. Polley, and S. E. Ralph, “Electronic equalization of multikilometer 10-Gb/s multimode fiber links: mode-coupling effects,” J. Lightwave Technol. 24, 4885-4894 (2006).
  26. A. M. E.-A. Diab, J. D. Ingham, R. V. Penty, and I. H. White, “10Gb/s transmission on single-wavelength multichannel SCM-based FDDI-grade MMF links at lengths over 300m: A statistical investigation,” J. Lightwave Technol. 25, 2976-2983 (2007).
  27. G. P. Agrawal, Fibre-Optic Communication Systems, 2nd ed. (Wiley, 1997).
  28. T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10-Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10, 376-386 (2004). [CrossRef]
  29. G. D. Brown, “Bandwidth and rise time calculations for digital multimode fiber-optic data links,” J. Lightwave Technol. 10, 672-678 (1992). [CrossRef]
  30. A. M. E.-A. Diab, J. D. Ingham, R. V. Penty, and I. H. White, “Statistical analysis of subcarrier-modulated transmission over 300m of 62.5-μm-core-diameter multimode fiber,” J. Lightwave Technol. 23, 2380-2398 (2005). [CrossRef]
  31. S. Kanprachar and I. Jacobs, “Diversity coding for subcarrier multiplexing on multimode fibres,” IEEE Trans. Commun. 51, 1546-1553 (2003). [CrossRef]
  32. R. Prasad, OFDM for Wireless Communications Systems (Artech House, 2004).
  33. M. Webster, L. Raddatz, I. H. White, and D. G. Cunningham, “A statistical analysis of conditioned launch for gigabit Ethernet links using multimode fibre,” J. Lightwave Technol. 17, 1532-1541 (1999). [CrossRef]
  34. L. Hanzo, S. X. Ng, T. Keller, and W. Webb, Quadrature Amplitude Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised and Space-Time Coded OFDM, CDMA and MC-CDMA Systems (Wiley, 2004).
  35. K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R. Jewett, J. Pernillo, C. Tan, and A. Montijo, “A 20GS/s 8b ADC with a 1MB memory in 0.18μm CMOS,” in 2003 International Solid-State Circuits Conference. Digest of Technical Papers (IEEE, 2003).
  36. W.-P. Huang, X. Li, C.-Q. Xu, X. Hong, C. Xu, and W. Liang, “Optical transceivers for fibre-to-the-premises applications: system requirements and enabling technologies,” J. Lightwave Technol. 25, 11-27 (2007). [CrossRef]
  37. E. J. Tyler, P. Kourtessis, M. Webster, E. Rochart, T. Quinlan, S. E. M. Dudley, S. D. Walker, R. V. Penty, and I. H. White, “Toward terabit per-second capacities over multimode fibre links using SCM/WDM techniques,” J. Lightwave Technol. 21, 3237-3243 (2003). [CrossRef]
  38. M. Webster, L. Raddatz, I. H. White, and D. G. Cunningham, “A statistical analysis of conditioned launch for gigabit Ethernet links using multimode fibre,” J. Lightwave Technol. 17, 1532-1541 (1999). [CrossRef]
  39. A. M. E.-A. Diab, J. D. Ingham, R. V. Penty, and I. H. White, “Statistical analysis of subcarrier-modulated transmission over 300m of 62.5-μm-core-diameter multimode fibre,” J. Lightwave Technol. 23, 2380-2398 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited