OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Keren Bergman
  • Vol. 7, Iss. 4 — Apr. 1, 2008
  • pp: 310–320

Transmission in optically transparent core networks

Daniel A. Fishman, Yuan-Hua Kao, Xiang Liu, and S. Chandrasekhar  »View Author Affiliations


Journal of Optical Networking, Vol. 7, Issue 4, pp. 310-320 (2008)
http://dx.doi.org/10.1364/JON.7.000310


View Full Text Article

Acrobat PDF (287 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical fiber transmission systems have become critical in facilitating the rapid growth in high-speed services in the consumer and commercial markets. It is apparent that as higher-speed services, such as IPTV, become available there will be even greater demand for capacity in the distribution and core transport networks. Hence, it is no wonder that underlying optical transport infrastructures need to be scalable and robust to reliably and economically support these services. Service providers have long recognized the importance of transmission capacity in the design of their networks. However, technological limitations often obscure the role of transparency in meeting their requirements. We review and clarify the critical role that optical transparency will have in facilitating the types of optical infrastructures required to support future services and highlight the technologies that enable it. In particular, we summarize recent advances in broadband Raman amplification, transmitter and receiver technologies with advanced modulation formats, dispersion management, signal processing, reconfigurable optical add-drop multiplexing, and dense wavelength-division-multiplexed transmission with mixed 10, 40, and potential 100Gbits/s channels. Network planning tools that facilitate fast and optimal deployment of optical transport systems are also discussed.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1155) Fiber optics and optical communications : All-optical networks

ToC Category:
Transmission in Optically Transparent Core Networks

History
Original Manuscript: September 5, 2007
Revised Manuscript: January 27, 2008
Manuscript Accepted: January 29, 2008
Published: March 21, 2008

Virtual Issues
Transmission in Optically Transparent Core Networks (2007) Journal of Optical Networking

Citation
Daniel A. Fishman, Yuan-Hua Kao, Xiang Liu, and S. Chandrasekhar, "Transmission in optically transparent core networks," J. Opt. Netw. 7, 310-320 (2008)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jon-7-4-310


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “MONET: multiwavelength optical networking,” J. Lightwave Technol. 14, 1349-1355 (1996). [CrossRef]
  2. P. Hofmann, E. E. Basch, S. Gringeri, R. Egorov, D. A. Fishman, and W. A. Thompson, “DWDM long haul network deployment for the Verizon GNI nationwide network,” in Optical Fiber Communication Conference. Technical Digest (IEEE, 2005), paper OTuP5.
  3. D. A. Fishman, W. A. Thompson, and L. Vallone, “LambdaXtremereg transport system: R&D of a high capacity system for low cost, ultra long haul DWDM transport,” Bell Labs Tech. J. 11, 27-53 (2006).
  4. X. Liu, D. M. Gill, and S. Chandrasekhar, “Optical technologies and techniques for high bit rate fiber transmission,” Bell Labs Tech. J. 11, 83-104 (2006).
  5. D. A. Fishman, J. A. Nagel, T. W. Cline, R. E. Tench, T. C. Pleiss, T. Miller, D. G. Coult, M. A. Milbrodt, P. D. Yeates, A. Chraplyvy, R. Tkach, A. B. Piccirilli, J. R. Simpson, and C. M. Miller, “A high capacity noncoherent FSK lightwave field experiment using Er3+-doped fiber optical amplifiers,” IEEE Photon. Technol. Lett. 2, 662-664 (1990).
  6. L. F. Mollenauer and K. Smith, “Demonstration of soliton transmission over more than 4000km in fiber with loss periodically compensated by Raman gain,” Opt. Lett. 13, 675-677 (1988).
  7. X. Liu, “Optimization of broadband Raman amplification in ultra-long-haul DWDM transmissions,” in Lasers and Electro-Optics, Technical Digest (IEEE, 2002), paper CThJ3.
  8. G. Mohs, C. Furst, H. Geiger, and G. Fischer, “Advantages of nonlinear RZ over NRZ on 10Gb/s single-span links,” in Optical Fiber Communication Conference (IEEE, 2000), paper FC2.
  9. W. D. Cornwell, H. O. Edwards, N. H. Taylor, D. S. Lotary, S. A. Smith, and S. Hamidi, “Comparison of 64×10Gb/s NRZ and RZ transmission over 6,000km using dispersion-managed fiber solution,” in Optical Fiber Communication Conference (IEEE, 2002), paper WP4.
  10. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23, 115-130 (2005). [CrossRef]
  11. K.-P. Ho, Phase-Modulated Optical Communication Systems (Springer, 2005).
  12. G. Raybon, A. Agarwal, S. Chandrasekhar, and R.-J. Essiambre, “Transmission of 42.7-Gb/s VSB-CSRZ over 1600km and four OADM nodes with a spectral efficiency of 0.8-bit/s/Hz,” in 31st European Conference on Optical Communication (IEEE, 2002), paper Mo3.2.7.
  13. A. J. Price and N. Le Mercier, “Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance,” Electron. Lett. 31, 58-59 (1995). [CrossRef]
  14. W. Kaiser, “SPM limit of duobinary transmission,” presented at the 26th European Conference on Optical Communication, Munich, Germany, Sept. 3-7, 2000.
  15. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Küng, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, “2.5Tb/s(64.7Gb/s) transmission over 40×100km NZ-DSF using RZ-DPSK format and all-Raman-amplified spans,” in Optical Fiber Communication Conference and Exhibit (IEEE, 2002).
  16. C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. vanderWagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, “DWDM 40-Gb/s transmission over trans-pacific distance (10000km) using CSRZ-DPSK, enhanced FEC, and all-Raman-amplified 100-km ultrawave fiber spans,” J. Lightwave Technol. 22, 203-207 (2004). [CrossRef]
  17. G. Charlet, E. Corbe, J. Lazaro, A. Klekamp, R. Dischler, P. Tran, W. Idler, H. Mardoyan, A. Konczykowska, F. Jorge, and S. Bigo, “WDM transmission at 6Tbit/s capacity over transatlantic distance, using 42.7Gb/s differential phase-shift keying without pulse carver,” presented at Optical Fiber Communication Conference, Los Angeles, Calif., June 20-24, 2004, postdeadline paper PDP36.
  18. S. Chandrasekhar, X. Liu, D. Kilper, C. R. Doerr, A. H. Gnauck, E. C. Burrows, and L. L. Buhl, “0.8-bit/s/Hz terabit transmission at 42.7-Gb/s using hybrid RZ-DQPSK and NRZ-DBPSK formats over 16×80km SSMF spans and 4 bandwidth-managed ROADMs,” in Conference on Optical Fiber Communications and the National Fiber Optics Engineers Conference (IEEE, 2007), postdeadline paper PDP28.
  19. P. V. Kumar, M. Z. Win, H.-F. Lu, and C. N. Georghiades, “Error-control coding techniques and applications,” Optical Fiber Telecommunications IVB, I.P.Kaminov and T.Li, eds. (Academic, 2002), Chap. 17.
  20. B. Vasic and I. B. Djordjevic, “Low-density parity check for long-haul optical communication systems,” IEEE Photon. Technol. Lett. 14, 1208-1210 (2002).
  21. T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10-Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10, 376-386 (2004). [CrossRef]
  22. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical performance monitoring,” J. Lightwave Technol. 22, 294-304 (2004). [CrossRef]
  23. F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, “Fiber nonlinearities and their impact on transmission systems,” Optical Fiber Telecommunications IIIA, I.P.Kaminov and T.L.Koch, eds. (Academic, 1997), Chap. 8.
  24. F. Buchali and H. Bulow, “Adaptive PMD compensation by electrical and optical techniques,” J. Lightwave Technol. 22, 1116-1126 (2004). [CrossRef]
  25. X. Liu, “All channel PMD mitigation using distributed fast polarization scrambling in WDM systems with FEC,” in Conference on Optical Fiber Communications and the National Fiber Optics Engineers Conference (IEEE, 2007), paper OMH4.
  26. Q. Yu and A. Shanbhag, “Electronic data processing for error and dispersion compensation,” J. Lightwave Technol. 24, 4514-4525 (2006). [CrossRef]
  27. R.-J. Essiambre, G. Raybon, and B. Mikkelsen, “Pseudo-linear transmission of high-speed TDM signals, 40 and 160Gb/s,” Optical Fiber Telecommunications IVB, I.P.Kaminov and T.Li, eds. (Academic, 2002), Chap. 6.
  28. X. Liu, X. Wei, J. Ying, and D. A. Fishman, “Scalable dispersion management for hybrid 10-Gb/s and 40-Gb/s DWDM transmissions with high nonlinear tolerance,” IEEE Photon. Technol. Lett. 17, 1980-1982 (2005). [CrossRef]
  29. Y. Kao, A. Leven, Y. Baeyens, Y. Chen, D. Grosz, F. Bannon, W. Fang, A. Kung, D. Maywar, T. Lakoba, A. Agrawal, S. Banerjee, and T. Wood, “10Gb/s soliton generation for ULH transmission using a wideband GaAs pHemt amplifier,” in Optical Fiber Communications Conference (IEEE, 2003), paper FF6.
  30. S. A. Taegar, D. A. Fishman, and D. L. Correa, “Engineering and planning tool for ultra-long-haul optical mesh transport system,” in Optical Fiber Communication Conference and the National Fiber Optics Engineers Conference (IEEE, 2006), paper NTuF4.
  31. X. Liu, L. F. Mollenauer, and X. Wei, “Impact of group-delay ripple in transmission systems including phase-modulated formats,” IEEE Photon. Technol. Lett. 16, 305-307 (2004).
  32. D. A. Fishman, J. Ying, X. Liu, S. Chandrasekhar, and A. H. Gnauck, “Optical add/drop multiplexer with asymmetric bandwidth allocation and dispersion compensation for hybrid 10-Gb/s and 40-Gb/s DWDM transmission,” in Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (IEEE, 2006), paper OWI64.
  33. IEEE 802.3 Higher Speed Study Group, http://grouper.ieee.org/groups/802/3/hssg/.
  34. P. J. Winzer, G. Raybon, C. R. Doerr, L. L. Buhl, T. Kawanishi, T. Sakamoto, M. Izutsu, and K. Higuma, “2000-km WDM transmission of 10×107-Gb/s RZ-DQPSK,” presented at the 32nd European Conference on Optical Communication, Cannes, France, Sept. 24-28, 2006, postdeadline paper Th 4.1.3.
  35. H. Masuda, A. Sano, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Hagimoto, T. Yamada, T. Furuta, and H. Fukuyama, “0.4-Tb/s (204×111Gb/s) transmission over 240km using hybrid Raman/EDFAs,” in Conference on Optical Fiber Communications and the National Fiber Optics Engineers Conference (IEEE, 2007), postdeadline paper PDP20.
  36. P. J. Winzer, G. Raybon, S. Chandrasekhar, C. R. Doerr, T. Kawanishi, T. Sakamoto, and K. Higuma, “10×107-Gb/s NRZ-DQPSK transmission over 12×100km including 6 routing nodes,” in Conference on Optical Fiber Communications and the National Fiber Optics Engineers Conference (IEEE, 2007), postdeadline paper PDP24.
  37. J. Strand, A. L. Chiu, and R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag. 39(2), 81-87 (2001). [CrossRef]
  38. S. Baroni, P. Bayvel, R. J. Gibbens, and S. K. Korotky, “Analysis and design of resilient multifiber wavelength-routed optical transport networks,” J. Lightwave Technol. 17, 743-758 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited