OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Keren Bergman
  • Vol. 7, Iss. 4 — Apr. 1, 2008
  • pp: 321–350

Technological challenges on the road toward transparent networking

Stelios Sygletos, Ioannis Tomkos, and Juerg Leuthold  »View Author Affiliations


Journal of Optical Networking, Vol. 7, Issue 4, pp. 321-350 (2008)
http://dx.doi.org/10.1364/JON.7.000321


View Full Text Article

Acrobat PDF (794 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The sustainable growth of high-bandwidth services and on-demand applications has introduced new challenges to next-generation networks in terms of capacity, configurability, and resiliency. Significant networking advancements need to be achieved with architectures and technologies that are scalable with respect to cost, size, and power requirements, while they should be capable of handling high traffic volumes and dynamically changing connection patterns. Transparent networking has the potential to meet those requirements and offer significant benefits in terms of performance and cost. We present the key enabling technologies, review the state-of-the-art achievements, and discuss the new opportunities that optical transparency has and will introduce.

© 2008 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4510) Fiber optics and optical communications : Optical communications
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4251) Fiber optics and optical communications : Networks, assignment and routing algorithms

ToC Category:
Transmission in Optically Transparent Core Networks

History
Original Manuscript: October 23, 2007
Revised Manuscript: January 22, 2008
Manuscript Accepted: February 1, 2008
Published: March 21, 2008

Virtual Issues
(2009) Advances in Optics and Photonics
Transmission in Optically Transparent Core Networks (2007) Journal of Optical Networking

Citation
Stelios Sygletos, Ioannis Tomkos, and Juerg Leuthold, "Technological challenges on the road toward transparent networking," J. Opt. Netw. 7, 321-350 (2008)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jon-7-4-321


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Solheim and J. Frodsham, “Next generation backbone networks,” in Proceedings of the National Fiber Optic Engineers Conference (2001), pp. 1283-1289.
  2. I. Tomkos, M. Vasilyev, J.-K. Rhee, M. Mehendale, B. Hallock, B. Szalabofka, M. Williams, S. Tsuda, and M. Sharma, “80×10.7Gb/s ultra-long-haul (+4200km) DWDM network with reconfigurable 'Broadcast & Select' OADMs,” in Proceedings of the Optical Fiber Communication Conference (2002), pp. FC-1-1- FC1-3.
  3. Nortel Networks, “OpTera Metro 5000 Multiservice Platform,” product bulletin, http://www.nortelnetworks.com/products/01/optera/metro/msp/5000/.
  4. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14, 955-966 (1996).
  5. J. Leuthold, J. Jaques, and S. Cabot, “All-optical wavelength conversion and regeneration,” in Proceedings of the Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper WN1.
  6. R. Ramaswami, “Optical fiber communication: from transmission to networking,” IEEE Commun. Mag. 40, 138-147 (2002).
  7. J. S. Cook and O. I. Szentesi, “North American field trials and early applications in telephony,” IEEE J. Sel. Areas Commun. 1, 393-397 (1983).
  8. H. Ishio, “Japanese field trials and applications in telephony,” IEEE J. Sel. Areas Commun. 1, 404-412 (1983).
  9. R. J. Meers, L. Reekie, M. Jauncey, and D. N. Payne, “Low noise erbium-doped fiber amplifier at 1.54μm,” Electron. Lett. 23, 1026-1028 (1987). [CrossRef]
  10. E. Desurvire, J. R. Simpson, and P. C. Becker, “High gain erbium-doped traveling-wave fiber amplifier,” Opt. Lett. 12, 888-890 (1987).
  11. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “100Gb/s×10 channel OTDM/WDM transmission using a single supercontinuum WDM source,” in Proceedings of the Optical Fiber Communication Conference (1996), postdeadline paper PD20.
  12. H. Onaka, H. Miyata, G. Ishikawa, K. Otsuka, H. Ooi, Y. Kai, S. Kinoshita, M. Seino, H. Nishimoto, and T. Chikama, “1.1Tb/s WDM transmission over a 150km1.3μm zero dispersion single mode fiber,” Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), paper PD19.
  13. A. R. Chraplyvy and R. W. Tkach, “Terabit/second transmission experiments,” IEEE J. Quantum Electron. 34, 2103-2108 (1998). [CrossRef]
  14. J.-X. Cai, M. Nissov, A. N. Pilipetskii, C. R. Davidson, R.-M. Mu, M. A. Mills, L. Xu, D. Foursa, R. Menges, P. C. Corbett, D. Sutton, and N. S. Bergano, “2.4Tb/s(120×20Gb/s) transmission over transoceanic distance with optimum FEC overhead and 48 percent spectral efficiency,” in Proceedings of the Optical Fiber Communication Conference (2001).
  15. B. Bakhishi, M. F. Arend, M. Vaa, E. A. Golovchenko, D. Duff, H. Li, S. Jiang, W. W. Patterson, R. L. Maybach, and D. Kovsh, “1Tb/s(101×10Gb/s) transmission over transpacific distance using 28nm C-band EDFAs,” in Proceedings of the Optical Fiber Communication Conference (2001), pp. PD22/1-3.
  16. G. Vareille, F. Pitel, and J. F. Marcerou, “3Tb/s(300×11Gb/s) transmission over 7380km using 28nmC+L-band with 25GHz channel spacing and NRZ format,” in Proceedings of the Optical Fiber Communication Conference (2001), pp. PD 24/1-3.
  17. K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, and T. Ono, “10.92-Tb/s(273×40Gb/s) triple-band/ultra-dense WDM optical repeatered transmission experiment,” in Proceedings of the Optical Fiber Communication Conference (2001), pp. PD 24/1-3.
  18. S. Bigo, Y. Frignac, G. Charlet, W. Idler, S. Borne, H. Gross, R. Dischler, W. Poehlmann, P. Tran, C. Simonneau, D. Bayart, G. Veith, A. Jourdan, and J.-P. Hamaide, “10.2Tb/s (256×42.7Gb/s PDM/WDM) transmission over 100km teralight fiber with 1.28bit/s/Hz spectral efficiency,” in Proceedings of the Optical Fiber Communication Conference (2001), pp. PD25/ 1-3.
  19. R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “Monet: multiwavelength optical networking,” J. Lightwave Technol. 14, 1423-1435 (1996). [CrossRef]
  20. J. Zhou, R. Cadeddu, E. Casaccia, C. Cavazzoni, and M. J. O'Mahony, “Crosstalk in multiwavelength optical cross-connect networks,” J. Lightwave Technol. 14, 1423-1435 (1996). [CrossRef]
  21. A. A. M. Saleh, “All-optical networking in metro, regional and backbone networks,” in LEOS Summer Topicals on All-Optical Networks (2002), pp. 15.
  22. J. M. Simmons, “On determining the optimal optical reach for a long-haul network,” J. Lightwave Technol. 23, 1039-1048 (2005). [CrossRef]
  23. A. F. Wallace, “Ultra long-haul DWDM: network economics,” in Proceedings of the Optical Fiber Communication Conference (2001), paper TuT1.
  24. A. Morea and J. Poirrier, “A critical analysis of the possible cost savings of translucent networks,” in 5th International Workshop on Design of Reliable Communication Networks (DRCN) (2005), pp. 311-317.
  25. P. Hofmann, E. E. Basch, S. Gringeri, R. Egorov, D. A. Fishman, and W. A. Thompson, “DWDM long haul network deployment for the Verizon GNI nationwide network,” in Proceedings of the Optical Fiber Communication Conference (2005), Vol. 2, pp. 3.
  26. D. Fishman, D. L. Correa, E. H. Goode, T. L. Downs, A. Y. Ho, A. Hale, P. Hofmann, B. Basch, and S. Gringeri, “The rollout of optical networking: lambdaXtreme national network deployment,” Bell Labs Technical J. 11, 55-63 (2006).
  27. D. Fishman, W. A. Thompson, and L. Vallone, “LambdaXtreme transport system: R&D of a high capacity system for low cost ultra long haul DWDM transport,” Bell Labs Technical J. 11, 27-53 (2006).
  28. A. Tzanakaki, I. Zacharopoulos, and I. Tomkos, “Broadband building blocks,” IEEE Circuits Devices Mag. 20, 32-37 (2004).
  29. D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, “Wavelength selective switching for optical bandwidth management,” Bell Labs Technical J. 11, 105-128 (2006).
  30. C. R. Doerr, L. W. Stulz, D. S. Levy, L. Gomez, M. Cappuzzo, J. Bailey, R. Long, A. Wong-Foy, E. Laskowski, E. Chen, S. Patel, and T. Murphy, “Eight-wavelength add-drop filter with true reconfigurability,” IEEE Photon. Technol. Lett. 15, 138-140 (2003). [CrossRef]
  31. H. Miyata, Y. Kaito, Y. Kai, H. Onaka, T. Nakazawa, M. Doi, M. Seino, T. Chikama, Y. Kotaki, K. Wakao, M. Komiyama, T. Kunikane, H. Yonetani, and Y. Sakai, “Fully dynamic and reconfigurable optical add/drop multiplexer on 0.8nm channel spacing using AOTF and 32-wave tunable LD module,” in Proceedings of the Optical Fiber Communication Conference (2000), pp. 287-289.
  32. J. Kim, C. J. Nuzman, B. Kumar, D. F. Lieuwen, J. S. Kraus, A. Weiss, C. P. Lichtenwalner, A. R. Papazian, R. E. Frahm, N. R. Basavanhally, D. A. Ramsey, V. A. Aksyuk, F. Pardo, M. E. Simon, V. Lifton, H. B. Chan, M. Haueis, A. Gasparyan, H. R. Shea, S. Arney, C. A. Bolle, P. R. Kolodner, R. Ryf, D. T. Neilson, and J. V. Gates, “1100×1100 port MEMS-based optical cross-connect with 4-dB maximum loss,” IEEE Photon. Technol. Lett. 15, 1537-1539 (2003). [CrossRef]
  33. I. M. Hayee and A. E. Willner, “Transmission penalties due to EDFA gain transients in add-drop multiplexed WDM networks,” IEEE Photon. Technol. Lett. 11, 889-891 (1999). [CrossRef]
  34. D. C. Kilper, S. Chandrasekhar, and C. A. White, “Transient gain dynamics of cascaded erbium-doped fiber amplifiers with re-configured channel loading,” in Proceedings of the Optical Fiber Communication Conference (2006), Vol. 3, pp. 3.
  35. A. R. Grant and D. Kilper, “Signal transient propagation in an all Raman amplified system,” in Proceedings of the Optical Fiber Communication Conference (2004), Vol. 2, pp. 3.
  36. M. Karasek and F. W. Willems, “Channel addition/removal response in cascades of strongly inverted erbium-doped fiber amplifiers,” J. Lightwave Technol. 16, 2311-2317 (1998). [CrossRef]
  37. N. Antoniades, A. Boskovic, I. Tomkos, N. Madamopoulos, M. Lee, I. Roudas, D. Pastel, M. Sharma, and M. Yadlowsky, “Performance engineering and topological design of metro WDM optical networks using computer simulations,” IEEE J. Sel. Areas Commun. 20, 149-165 (2002). [CrossRef]
  38. G. Charlet and S. Bigo, “Upgrading WDM submarine systems to 40Gb/s channel bitrate,” Proc. IEEE 94, 935-951 (2006).
  39. P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94, 952-985 (2006). [CrossRef]
  40. A. Gladisch, R.-P. Braun, D. Breuer, A. Ehrhardt, H.-M. Foisel, M. Jaeger, R. Leppla, M. Schneiders, S. Vorbeck, W. Weiershausen, and F.-J. Westphal, “Evolution of terrestrial optical system and core network architecture,” Proc. IEEE 94, 869-891 (2006). [CrossRef]
  41. J. Conradi, “Bandwidth-efficient modulation formats for digital fibre transmission systems,” in Optical Fiber Telecommunications, IV B, I.Kaminow and T.Li, Eds. (Academic, 2002), pp. 862-901.
  42. P. Peloso, M. Prunaire, L. Noirie, and D. Pennicks, “Optical transparency of a heterogeneous pan-European network,” J. Lightwave Technol. 22, 242-248 (2004). [CrossRef]
  43. B. J. Eggleton, “Dynamic dispersion, compensation devices for high speed transmission systems,” in Proceedings of the Optical Fiber Communication Conference (2001), Vol. 3, paper WH1.
  44. D. McGhan, “Electronic dispersion compensation,” in Proceedings of the Optical Fiber Communication Conference (2006), pp. 15.
  45. A. E. Willner and S. A. Havstadt, “Critical issues in reconfigurable systems and networks,” Fifth Asia-Pacific Conference on Communications and Fourth Optoelectronics and Communications Conference (IEEE, 1999), Vol. 1, pp. 299-302.
  46. C. Xie, “Performance evaluation of electronic equalizers for dynamic PMD compensation in systems with FEC,” in Proceedings of the Optical Fiber Communication Conference (2007).
  47. R. Tomkos, D. Vogiatzis, C. Mas, I. Zacharopoulos, A. Tzanakaki, and E. Varvarigos, “Performance engineering of metropolitan area optical networks through impairment constraint routing,” IEEE Commun. Mag. 42, S40-S47 (2004). [CrossRef]
  48. I. Tomkos, S. Sygletos, A. Tzanakaki, and G. Markidis, “Impairment constraint based routing in mesh optical networks,” in Proceedings of the Optical Fiber Communication Conference (2007), paper OWR1 (invited paper).
  49. G. Markidis, S. Sygletos, A. Tzanakaki, and I. Tomkos, “Impairment constraint based routing in optical networks employing 2R regeneration,” in Proceedings of the European Conference on Optical Communications (2006), paper Tu3.6.7.
  50. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preis, and A. E. Willner, “Optical performance monitoring,” J. Lightwave Technol. 22, 294-304 (2004). [CrossRef]
  51. C. Pinart and G. Junyet, “The INIM system: in-service non-intrusive monitoring for QoS-enabled transparent WDM,” IEEE J. Sel. Top. Quantum Electron. 12, 635-644 (2006).
  52. A. Kirstaedter, M. Wrage, G. Goeger, W. Fischler, and B. Spinnler, “Current aspects of optical performance monitoring and failure root cause analysis in optical WDM networks,” Proc. SPIE 5625, 362-373 (2005).
  53. A. Richter, W. Fischler, H. Bock, R. Bach, and W. Grupp, “Optical performance monitoring in transparent and configurable DWDM networks,” Proc. IEEE 149, 1-5 (2002).
  54. G. Rossi, T. E. Dimmick, and D. Blumenthal, “Optical performance monitoring in reconfigurable WDM optical networks using subcarrier multiplexing,” J. Lightwave Technol. 18, 1639-1648 (2000).
  55. D. C. Kilper and W. Weingatner, “Monitoring optical network performance degradation due to amplifier noise,” J. Lightwave Technol. 21, 1171-1178 (2003).
  56. S. Wielandy, M. Fishteyn, and B. Zhu, “Optical performance monitoring using nonlinear detection,” J. Lightwave Technol. 22, 784-793 (2004).
  57. M. Dinu, D. C. Kilper, and H. R. Stuart, “Optical performance monitoring using data stream intensity autocorrelation,” J. Lightwave Technol. 24, 1194-1202 (2006).
  58. C. Mas and P. Thiran, “An efficient algorithm for locating soft and hard failures in WDM networks,” IEEE J. Sel. Areas Commun. 18, 1900-1911 (2000). [CrossRef]
  59. N. S. V. Rao, “Computational complexity issues in operative diagnosis of graph-based systems,” IEEE Trans. Comput. 42, 447-457 (1993).
  60. E. B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength division multiplexing systems,” IEEE J. Sel. Top. Quantum Electron. 12, 615-626 (2006).
  61. A. A. Saleh and J. Simmons, “Evolution towards next-generation core optical networks,” J. Lightwave Technol. 24, 3303-3321 (2006).
  62. R. Ryf, J. Kim, J. P. Hickey, A. Gnauck, D. Carr, F. Pardo, C. Bolle, R. Frahm, N. Bassavanhally, C. Yoh, D. Ramsey, R. Boie, R. George, J. Kraus, C. Lichtenwalner, R. Papazian, J. Gates, H. R. Shea, A. Gasparyan, V. Muratov, J. E. Griffith, J. A. Prybyla, S. Goyal, C. D. White, M. T. Lin, R. Ruel, M. Mijander, S. Arney, D. T. Neilson, D. J. Bishop, P. Kolodner, S. Pau, C. Nuzman, A. Weis, B. Kumar, D. Lieuwen, V. Aksyuk, D. S. Greywall, T. C. Lee, H. T. Soh, W. M. Mansfield, S. Jin, W. Y. Lai, H. A. Huggins, D. L. Barr, R. A. Cirelli, G. R. Bogart, K. Teffau, R. Vella, H. Mavoori, A. Ramirez, N. A. Ciampa, F. P. Klemens, M. D. Morris, T. Boone, J. Q. Liu, J. M. Rosamilia, and C. R. Giles, “1296-port MEMS transparent optical crossconnect with 2.07 petabit/s switch capacity,” in Proceedings of the Optical Fiber Communication Conference (2001), paper PD28.
  63. M. Vasilyev, I. Tomkos, R. June-Koo Rhee, M. Mehendale, B. S. Hallock, B. K. Szalabofka, M. Williams, S. Tsuda, and M. Sharma, “Broadcast and select OADMin 80×10.7Gb/s ultra long haul network,” IEEE Photon. Technol. Lett. 15, 332-334 (2003). [CrossRef]
  64. A. Boskovic, M. Sharma, N. Antoniades, and M. Lee, “Broadcast and select OADM nodes: application and performance trade-offs,” in Proceedings of the Optical Fiber Communication Conference (2002), pp. 158-159.
  65. H. Mouftah and J. M. H. Elmirghani, Photon Switching Technology (IEEE, 1999).
  66. S. Mechels, L. Muller, G. D. Morley, and D. Tillett, “1D MEMS-based wavelength switching subsystem,” IEEE Commun. Mag. 41, 88-95 (2003). [CrossRef]
  67. J. Leuthold, R. Ryf, D. N. Maywar, S. Cabot, J. Jaques, and S. S. Patel, “Non-blocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800km,” J. Lightwave Technol. 21, 2863-2870 (2003). [CrossRef]
  68. D. J. Blumenthal, A. Carena, L. Rau, V. Curri, and S. Humphries, “All-optical label swapping with wavelength conversion for WDM-IP networks with subcarrier multiplexed addressing,” IEEE Photon. Technol. Lett. 11, 1497-1499 (1999). [CrossRef]
  69. S. A. Hamilton, B. S. Robinson, T. E. Murphy, S. J Savage, and E. P. Ippen, “100Gb/s optical time-division multiplexed networks,” J. Lightwave Technol. 20, 2086-2100 (2002). [CrossRef]
  70. W. Wang, L. G. Rau, and D. J. Blumenthal, “160-Gb/s variable length packet/10-Gb/s-label all-optical label switching with wavelength conversion and unicast/multicast operation,” J. Lightwave Technol. 23, 211-218 (2005).
  71. Y. Horiuchi and M. Suzuki, “Demonstration of dynamic self-routing in an all-optical burst switched mesh network with four optical label switch routers,” in Proceedings of the Optical Fiber Communication Conference (2003), pp. 217-219.
  72. J. Cao, M. Jeon, Z. Pan, Y. Bansal, Z. Wang, Z. Zhu, V. Hernandez, J. Taylor, V. Akella, and S. Yoo, “Error-free multihop cascaded operation of optical label switching routers with all-optical label swapping,” in Proceedings of the Optical Fiber Communication Conference (2003), pp. 791-792.
  73. M. Y. Jeon, Z. Pan, J. Cao, Y. Bansal, J. Taylor, Z. Wang, V. Akella, K. Okamoto, S. Kamei, J. Pan, and S. J. B. Yoo, “Demonstration of all-optical packet switching routers with optical label swapping and 2R regeneration for scalable optical label switching network applications,” J. Lightwave Technol. 21, 2723-2733 (2003). [CrossRef]
  74. D. Klonidis, R. Nejabati, C. T. Politi, M. J. O' Mahony, and D. Simeonidou, “Demonstration of a fully functional and controlled optical packer switch at 40Gb/s,” in Proceedings of the European Conference on Optical Communications (2004), paper Th4.4.5.
  75. J. Leuthold, L. Moller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40, 554-555 (2004). [CrossRef]
  76. C. Schubert, R. Ludwig, S. Watanabe, F. Futami, C. Schmidt, J. Berger, C. Boerner, S. Ferber, and H. G. Weber, “160Gb/s wavelength converter with 3R-regenerating capability,” Electron. Lett. 38, 903-904 (2002). [CrossRef]
  77. S. Nakamura, Y. Ueno, and K. Tajima, “168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch,” IEEE Photon. Technol. Lett. 13, 1091-1093 (2001). [CrossRef]
  78. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25, 103-108 (2007). [CrossRef]
  79. H. Sotobayashi and W. Chujo, “Inter-wavelength-band conversions and demultiplexings of 640Gb/s OTDM signals,” in Proceedings of the Optical Fiber Communication Conference (2003), pp. 261-262.
  80. S. Nakamura, Y. Ueno, and K. Tajima, “Error-free all-optical demultiplexing at 336Gb/s with a hybrid-integrated symmetric Mach-Zehnder switch,” in Proceedings of the Optical Fiber Communication Conference (2002), pp. FD3-1-FD3-3.
  81. S. Kodama, T. Yoshimatsu, and H. Ito, “320Gb/s optical gate monolithically integrating photodiode and electroabsorption modulator,” Electron. Lett. 39, 383-384 (2003). [CrossRef]
  82. J. Leuthold, R. Ryf, and D. Maywar, “Novel all-optical wavelength converter in an add/drop multiplexing network demonstrating transmission over 42 nodes and 16800km,” in Proceedings of LEOS'2002 Annual Meeting (2002), paper PD 1.3.
  83. D. Rouvillain, P. Brindel, E. Sequineau, L. Pierre, O. Leclerc, H. Choumane, G. Aubin, and J. L. Oudar, “Optical 2R regenerator based on passive saturable absorber for 40Gb/s WDM long-haul transmissions,” Electron. Lett. 38, 1113-1114 (2002). [CrossRef]
  84. G. Raybon, Y. Su, J. Leuthold, R. Essiambre, K. Dryer, T. Her, C. Jorgensen, P. Steinvurzel, and K. Feder, “40Gb/s pseudo-linear transmission over one million kilometres,” in Proceedings of the Optical Fiber Communication Conference (2002), pp. FD10-1-FD10-3.
  85. M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640Gb/s transmission experiment over 60km using 400fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34, 907-908 (1998). [CrossRef]
  86. S. Spalter, G. Lenz, R. E. Slusher, H. Y. Hwang, J. Zimmermann, T. Ktsufji, S.-W. Cheong, and M. E. Lines, “Highly nonlinear chalcogenide glasses for ultrafast all optical switching in optical TDM communication systems,” in Proceedings of the Optical Fiber Communication Conference (2000), pp. 137-139.
  87. P. Petropoulos, T. M. Monro, H. Ebendorff-Heiderpriem, K. Frampton, R. C. Moore, H. N. Rutt, and D. J. Richardson, “Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber,” in Proceedings of the Optical Fiber Communication Conference (2003), pp. PD3-1-3.
  88. I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160Gb/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36, 1788-1790 (2000). [CrossRef]
  89. M. F. C. Stephens, D. Nesset, K. A. Willians, A. E. Kelly, R. V. Penty, I. H. White, and M. J. Fice, “Wavelength conversion at 40Gb/s via cross-gain modulation in distributed feedback laser integrated with semiconductor optical amplifier,” Electron. Lett. 35, 1762-1764 (1999). [CrossRef]
  90. J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, and M. Kauer, “40Gbit/s transmission and cascaded all-optical wavelength conversion over 1000000km,” Electron. Lett. 38, 890-892 (2002).
  91. P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppessen, “Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion flattened highly nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1908-1910 (2005). [CrossRef]
  92. K. Croussore, C. Kim, and G. Li, “All optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29, 2357-2359 (2004). [CrossRef]
  93. Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 16, 1685-1687 (2004). [CrossRef]
  94. V. S. Grigoryan, M. Shin, P. Devgan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase-noise-degraded DPSK signals: dynamic analysis and demonstration,” J. Lightwave Technol. 24, 135-142 (2006). [CrossRef]
  95. I. Kang, C. Dorrer, L. Zhang, M. Rasras, L. Buhl, A. Bhardwaj, S. Cabot, M. Dinu, X. Liu, M. Cappuzzo, L. Gomez, A. Wong-Foy, Y. F. Chen, S. Patel, D. T. Neilson, J. Jacques, and C. R. Giles, “Regenerative all-optical wavelength conversion of 40Gb/s DPSK signals using a SOA MZI,” in Proceedings of the European Conference on Optical Communications (2005), paper Th. 4.3.3.
  96. P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength conversion,” IEEE Photon. Technol. Lett. 18, 1970-1973 (2006).
  97. A. Gnauck, “40-Gb/s RZ-differential phase shift keyed transmission,” in Proceedings of the Optical Fiber Communication Conference (2003), pp. 450-451.
  98. K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys., Part 2 12A, L1746-L1749 (1993).
  99. J. P. Sokoloff, P. R. Pruncal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787-790 (1993).
  100. K. Tajima, S. Sakamura, and Y. Sugimoto, “Ultrafast polarization-discriminating Mach-Zehnder all optical switch,” Appl. Phys. Lett. 67, 3709-3711 (1995). [CrossRef]
  101. K. L. Hall and K. A. Rauschenbach, “100-Gb/s bitwise logic,” Opt. Lett. 23, 1271-1273 (1998).
  102. Y. Ueno, S. Nakamura, K. Tarima, and S. Kitamura, “3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC),” IEEE Photon. Technol. Lett. 10, 346-348 (1998).
  103. J. Leuthold, B. Mikkelsen, R. E. Behringer, G. Raybon, C. H. Joyner, and P. A. Besse, “Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration,” IEEE Photon. Technol. Lett. 13, 860-862 (2001).
  104. J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, “All-optical wavelength converter based on a pulse reformatting optical filter,” in Proceedings of the Optical Fiber Communication Conference (2003), paper PD41.
  105. http://www.ihq.uni-karlsruhe.de/research/projects/TRIUMPH/.
  106. I. Tomkos, A. Tzanakaki, J. Leuthold, A. D. Ellis, D. Bimberg, P. Petropoulos, D. Simeonidou, S. Tsadka, and P. Monteiro, “Transparent ring interconnection using multiwavelength photonic switches,” in International Conference on Transparent Networks (2006), p. 23.
  107. T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Non-linear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron. 37, 1059-1065 (2001). [CrossRef]
  108. M. Spyropoulou, S. Sygletos, and I. Tomkos, “Study of multi-wavelength regenerative subsystem based on quantum-dot semiconductor optical amplifiers at 40Gbps,” in Proceedings of the Optical Fiber Communication Conference (2007), paper JWA37.
  109. M. Vasilyev and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30, 1458-1460 (2005).
  110. L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15, 5100-5113 (2007). [CrossRef]
  111. L. Provost, Ch. Kouloumentas, F. Parmigiani, S. Tsolakidis, I. Tomkos, P. Petropoulos, and D. J. Richardson, “Experimental investigation of a dispersion-managed multi-channel 2R regenerator,” Proceedings of the Optical Fiber Communication Conference (2008), paper OThJ3.
  112. K. Seki, K. Mikami, A. Katayama, S. Suzuki, N. Shinohara, and M. Nakabayashi, “Single-chip FEC codec using a concatenated BCH code for 10Gb/s LH optical transmission systems,” in Proceedings of the IEEE Custom Integrated Circuits Conference (IEEE, 2003), pp. 279-282.
  113. T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Taqami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “FEC based on block turbo code with 3dB soft decision for 10Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10, 376-386 (2004). [CrossRef]
  114. T. Tsuritani, K. Ishida, A. Agata, K. Shimomura, I. Morita, T. Tokura, H. Taga, T. Mizuochi, N. Edagawa, and S. Akida, “70-GHz-spaced 42.7GHz transpacific transmission over 9400km using pre-filtered CSRZ-DPSK signals, all-Raman repeaters and symmetrically dispersion managed fiber spans,” J. Lightwave Technol. 22, 215-224 (2004). [CrossRef]
  115. A. Tychopoulos, O. Koufopavlou, and I. Tomkos, “A tutorial on the evolution of architectures and the future prospects of outband and inband FEC for optical communications,” IEEE Circuits Devices Mag. 22, 79-86 (2006).
  116. ITU Series G: Transmission Systems and Media, Digital Systems and Networks, “Forward error correction for submarine systems,” ITU-T recommendationG.975 (ITU, 1996).
  117. S. Namiki, K. Seo, N. Tsukiji, and S. Shikii, “Challenges of Raman amplification,” Proc. IEEE 94, 1024-1035 (2006).
  118. C. R. S. Fludger, V. Handerek, and R. J. Mears, “Ultra-wide bandwidth Raman amplifiers,” in Proceedings of the Optical Fiber Communication Conference (2002), pp. 60-62.
  119. T. Naito, T. Tanaka, K. Torii, N. Shimojoh, H. Nakamoto, and M. Suyama, “A broadband distributed Raman amplifier for bandwidths beyond 100nm,” in Proceedings of the Optical Fiber Communication Conference (2002), pp. 116-117.
  120. L. Grüner-Nielsen, Y. Qian, B. Pàlsdóttir, P. B. Gaarde, S. Dyrbøl, and T. Verg, “Module for simultaneous C+L-band dispersion compensation and Raman amplification,” in Proceedings of the Optical Fiber Communication Conference (2002), pp. 65-66.
  121. H. Suzuki, J.-I. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada, and M. Sumida, “1-Tb/s(100×10Gb/s) super-dense WDM transmission with 25-GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology,” IEEE Photon. Technol. Lett. 12, 903-905 (2000). [CrossRef]
  122. W. A. Atia and R. S. Bondurant, “Demonstration of return-to-zero signalling in both OOK and DPSK formats to improve receiver sensitivity in an optically pre-amplified receiver,” in Proceedings of LEOS (1999), pp. 226-227.
  123. X. Zheng, F. Liu, and P. Jeppesen, “Receiver optimization for 40Gb/s optical duobinary signal,” IEEE Photon. Technol. Lett. 13, 744-746 (2001). [CrossRef]
  124. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, and C. Dorrer, “Spectrally efficient (0.8b/s/Hz) 1-Tb/s (25×42.7Gb/s) RZ-DQPSK transmission over 28 100-km SSMF spans with 7 optical add/drops,” in Proceedings of the Optical Fiber Communication Conference (2004), paper Th4.4.1.
  125. P. Mamyshev, B. Mikkelsen, F. Liu, S. Dey, J. Bennike, and C. Rasmussen, “Spectrally efficient pseudo duo-binary modulation formats for high speed optical data transmission,” in Conference on Lasers and Electro-Optics (2002).
  126. L. Shenping, M. Sauer, Z. D. Gaeta, D. V. Kuksenkov, S. R. Bickham, G. E. Berkey, L. Ming-Jun, and D. A. Nolan, “Broad-band dynamic dispersion compensation in nonlinear fiber-based device,” J. Lightwave Technol. 22, 29-38 (2004). [CrossRef]
  127. M. Shirasaki, “Chromatic-dispersion compensator using virtually angled phased array,” IEEE Photon. Technol. Lett. 9, 1598-1600 (1997). [CrossRef]
  128. Y. Painchaud, M. Lapointe, F. Trépanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent progress on FBG-based tunable dispersion compensators for 40Gb/s applications,” in Proceedings of the Optical Fiber Communication Conference (2007), pp. 1-3.
  129. T. Sugawara, S. Makio, M. Takahashi, H. Sano, M. Shishikura, and N. Kikuchi, “Low-loss 40Gbit/s tunable dispersion compensator using highly refractive angled etalons with multiple reflections,” Electron. Lett. 43, 540-542 (2007). [CrossRef]
  130. D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett. 15, 730-731 (2003). [CrossRef]
  131. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999). [CrossRef]
  132. K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable group-delay dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” IEEE J. Sel. Top. Quantum Electron. 2, 270-276 (1996). [CrossRef]
  133. C. R. Doerr, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, R. Blum, and H. Bulthuis, “Polarization-independent tunable dispersion compensator comprised of a silica arrayed waveguide grating and a polymer slab,” in Proceedings of the Optical Fiber Communication Conference (2006), pp. 1-3.
  134. D. M. Marom, C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, “Compact colorless tunable dispersion compensator with 1000-ps/nm tuning range for 40-Gb/s data rates,” J. Lightwave Technol. 24, 237-241 (2006).
  135. T. Nielsen and S. Chandrasekhar, “OFC 2004: workshop on optical and electronic mitigation of impairments,” J. Lightwave Technol. 23, 131-142 (2005).
  136. H. Bülow, B. Franz, A. Klekamp, and F. Buchali, “40Gb/s distortion mitigation and DSP equalization,” in Proceedings of the European Conference on Optical Communications (2007), paper 3.3.1.
  137. J. M. Gene, P. J. Winzer, S. Chandrasekhar, and H. Kogelnik, “Simultaneous compensation of polarization mode dispersion and chromatic dispersion using electronic signal processing,” J. Lightwave Technol. 25, 1735-1741 (2007).
  138. H. Jiang and R. Saunders, “Advances in SiGe ICs for 40Gb/s signal equalization,” in Proceedings of the Optical Fiber Communication Conference (2006), paper OTuE1.
  139. S. Wada, R. Ohhira, T. Ito, J. Yamazaki, Y. Amamiya, H. Takeshita, A. Noda, and K. Fukuchi, “Compensation for PMD-induced time-variant waveform distortions in 43-Gb/s NRZ transmission by ultra-wideband electrical equalizer module,” in Proceedings of the Optical Fiber Communication Conference (2006), paper OWE2.
  140. B. Franz, D. Rösener, R. Dischler, F. Buchali, B. Junginger, T. F. Meister, and K. Aufinger, “43Gb/sSiGe based electronic equalizer for PMD and chromatic dispersion mitigation,” in Proceedings of the European Conference on Optical Communications (2005), pp. 333-334.
  141. B. Franz, A. Klekamp, D. Rösener, F. Buchali, and H. Büllow, “Performance improvements of different modulation formats by applying adaptive electronic equalization in 43Gb/s systems,” in Proceedings of the European Conference on Optical Communications (2007), paper 3.3.2.
  142. E. Yoshida, H. Kawakami, E. Yamada, K. Kubota, Y. Miyagawa, Y. Miyamoto, T. Furuta, T. Itoh, K. Sano, and K. Murata, “Enlargement of PMD tolerance in 43Gb/s RZ-DQPSK signal using electrical dispersion compensation without adaptive control,” in Proceedings of the European Conference on Optical Communications (2007), paper 3.3.3.
  143. A. Klekamp, B. Franz, and H. Büllow, “PMD tolerance enhancement by adaptive receiver for 43Gb/s DPSK NRZ and RZ modulation,” in Proceedings of the European Conference on Optical Communications (2007), paper 3.3.4.
  144. C. Xie, “Performance of electronic pre-distortion in 40Gb/s systems with optical dispersion compensation for different modulation formats and transmission fibers,” in Proceedings of the European Conference on Optical Communications (2007), paper 3.3.5.
  145. P. M. Watts, M. Glick, P. Bayvel, and R. I. Killey, “Performance of electronic pre-distortion systems with 1 sample/bit processing using optical duobinary format,” in Proceedings of the European Conference on Optical Communications (2007), paper 3.3.6.
  146. A. Färbert, “Application of digital equalization in optical transmission systems,” in Proceedings of the Optical Fiber Communication Conference (2006), paper OTuE5.
  147. A. Färbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.-P. Elbers, H. Wernz, H. Griesser, and C. Glingener, “Performance of a 10.7Gb/s receiver with digital equalizer using maximum likelihood sequence estimation,” in Proceedings of the European Conference on Optical Communications (2004), pp. 10-11.
  148. S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10Gb/s lightwave systems,” J. Lightwave Technol. 17, 2235-2248 (1999). [CrossRef]
  149. R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schöpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischeer, T. Weyrauch, and W. Haase, “Polarization mode dispersion compensation at 10, 20 and 40Gb/s with various optical equalizers,” J. Lightwave Technol. 17, 1602-1616 (1999). [CrossRef]
  150. J. C. Rasmussen, A. Isomura, and G. Ishikawa, “Automatic compensation of PMD for 40Gb/s transmission systems,” J. Lightwave Technol. 20, 2101-2109 (2002). [CrossRef]
  151. P. C. Chou, J. M. Fini, and H. A. Haus, “Demonstration of a feed-forward PMD compensation technique,” IEEE Photon. Technol. Lett. 14, 161-163 (2002). [CrossRef]
  152. S. Bhandare and R. Noé, “Distributed PMD compensator in lithium-niobate-tantalate: performance modeling toward highest bit rates,” J. Lightwave Technol. 25, 2315-2320 (2007).
  153. S. Mitani, K. Ishida, T. Sugihara, K. Shimizu, M. Takabayashi, Y. Shimakura, and K. Yoshiara, “Adaptive optical compensation with twin fiber gratings for first- and second-order PMD,” in Proceedings of the Optical Fiber Communication Conference (2007), pp. 1-3.
  154. M. Akbulut, A. M. Weiner, and P. J. Miller, “Broadband all-order polarization mode dispersion compensation using liquid-crystal modulator arrays,” J. Lightwave Technol. 24, 251-261 (2006). [CrossRef]
  155. H. F. Haunstein, W. Sauer-Greff, A. Dittrich, K. Sticht, and R. Ubransky, “Principles of electronic equilization of polarization-mode dispersion,” J. Lightwave Technol. 22, 1169-1182 (2004). [CrossRef]
  156. F. Buchali and H. Bulow, “Adaptive PMD compensation by electrical and optical techniques,” J. Lightwave Technol. 22, 1116-1126 (2004). [CrossRef]
  157. M. Jager, T. Rankl, J. Speidel, H. Bulow, and F. Buchali, “Performance of turbo equalizers for optical PMD channels,” J. Lightwave Technol. 24, 1226-1236 (2006).
  158. L. L. Minkov, I. B. Djordjevic, H. G. Batshon, L. Xu, T. Wang, M. Cvijetic, and F. Kueppers, “Demonstration of PMD compensation by LDPC-coded turbo equalization and channel capacity loss characterization due to PMD and quantization,” IEEE Photon. Technol. Lett. 19, 1852-1854 (2007).
  159. A. Hirano, Y. Miyamoto, K. Yonenaga, A. Sano, and H. Toba, “40Gb/s L-band transmission experiment using SPM-tolerant carrier-suppressed RZ format,” Electron. Lett. 35, 2213-2215 (1989). [CrossRef]
  160. N. S. Bergano, “Wavelength division multiplexing in long-haul transoceanic transmission systems,” J. Lightwave Technol. 23, 4125-4139 (2005). [CrossRef]
  161. R. Mewanou and S. Pierre, “Dynamic routing algorithms in all-optical networks,” in Canadian Conference on Electrical and Computer Engineering (IEEE CCECE 2003) (IEEE, 2003), Vol. 2, pp. 773-776.
  162. D. Cavendish, A. Kolarov, and B. Sengupta, “Routing and wavelength assignment in WDM mesh networks,” in Proceedings of the Global Telecommunications Conference (GLOBECOM '04) (IEEE, 2004), Vol. 2, pp. 1016-1022.
  163. D. Banerjee and B. Mukherjee, “A practical approach for routing and wavelength assignment in large wavelength-routed optical networks,” IEEE J. Sel. Areas Commun. 14, 903-908 (1996). [CrossRef]
  164. B. Ramamurthy, D. Datta, H. Feng, J. P. Heritagen, and B. Mukherjee, “Impact of transmission impairments on the tele-traffic performance of wavelength routed optical networks,” J. Lightwave Technol. 17, 1713-1723 (1999).
  165. A. Maher, D. Elie-Dit-Cosaque, and L. Tancevski, “Enhancement to multi-protocol lambda switching (MPλS) to accommodate transmission impairments,” in Proceedings of the Global Telecommunications Conference (GLOBECOM '01) (IEEE, 2001), pp. 70-75.
  166. M. Ali, D. Elie-Dit-Cosaque, and L. Tancevski, “Network optimization with transmission impairments-based routing,” in Proceedings of the European Conference on Optical Communications (2001), pp. 42-43.
  167. J. F. Martins-Filho, C. J. A. Bastos-Filho, E. A. J. Arantes, S. C. Oliveira, F. D. Nunes, R. G. Dante, and E. Fontana, “Impact of device characteristics on network performance from a physical-impairment-based routing algorithm,” in Proceedings of the Optical Fiber Communication Conference (2006), pp. 23-27.
  168. P. Kulkarni, A. Tzanakaki, C. Mas Machuka, and I. Tomkos, “Benefits of Q-factor based routing in WDM metro networks,” in Proceedings of the European Conference on Optical Communications (2005), pp. 981-982.
  169. R. Martinez, C. Pinart, F. Cuqini, N. Andriolli, L. Valcarenqhi, P. Castoldi, L. Wosinska, J. Cornelias, and G. Junyent, “Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks,” IEEE Commun. Mag. 44, 76-85 (2006).
  170. F. Cugini, N. Andrioli, L. Valcarenghi, and P. Castoldi, “Physical impairment aware signaling for dynamic light-path set up,” in Proceedings of the European Conference on Optical Communications (2005), Vol. 4, paper Th 3.5.6.
  171. J. Strand, A. L. Chiu, and R. Tkach, “Issues for routing in the optical layer,” IEEE Commun. Mag. 39, 81-87 (2001).
  172. G. Bogliolo, V. Curri, and M. Mellia, “Considering transmission impairments in RWA problem: greedy and metaheuristic solutions,” in Proceedings of the Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2007), pp. 1-3.
  173. Y. Huang, J. P. Heritage, and B. Makherjee, “Connection provisioning with transmission impairment consideration in optical WDM networks with high-speed channels,” J. Lightwave Technol. 23, 982-993 (2005). [CrossRef]
  174. N. Kikuchi and S. Sasaki, “Analytical evaluation technique of self-phase modulation effect on the performance of cascaded optical amplifier systems,” J. Lightwave Technol. 13, 868-878 (1995).
  175. A. Cartaxo, “Cross-phase modulation in intensity modulation direct detection WDM systems with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 17, 178-190 (1990). [CrossRef]
  176. K. Inoue, K. Nakanishi, and K. Oda, “Crosstalk and power penalty due to fiber four-wave mixing in multi-channel transmissions,” J. Lightwave Technol. 12, 1423-1439 (1994). [CrossRef]
  177. G. Markidis, S. Sygletos, A. Tzanakaki, and I. Tomkos, “Impairment aware based routing and wavelength assignment in transparent long haul networks,” in 11th International Conference on Optical Network Design and Modeling (ONDM' 07) (2007), pp. 48-57.
  178. L.-K. Chen, M.-H. Cheung, and C.-K. Chan, “From optical performance monitoring to optical network management: research progress and challenges,” in Proceedings of the International Conference on Optical Communications and Networks (ICOCN 2004) (2004), pp. 159-162.
  179. R. Habel, K. Roberts, A. Solheim, and J. Harley, “Optical domain performance monitoring,” in Proceedings of the Optical Fiber Communication Conference (2000), pp. 174-175.
  180. S. K. Shin, K. J. Park, and Y. C. Chung, “A novel optical signal-to-noise ratio monitoring technique for WDM network,” in Proceedings of the Optical Fiber Communication Conference (2000), pp. 182-184.
  181. L. Meflah, B. Thomsen, J. Mitchell, P. Bayvel, and G. Lehmann, “Advanced optical performance monitoring for dynamically reconfigurable networks,” in Proceedings of the Conference on Networks and Optical Communication (NOC) (2005), pp. 554.
  182. D. C. Kilper, S. Chandrasekhar, L. Buhl, A. Agarwal, and D. Maywar, “Spectral monitoring of OSNR in high speed networks,” in Proceedings of the European Conference on Optical Communications (2002), p. 7.4.4.
  183. K. Mueller, N. Hanik, A. Gladisch, H.-M. Foisel, and C. Caspar, “Application of amplitude histograms for quality of service measurement of optical channels and fault identification,” in Proceedings of the European Conference on Optical Communications (1998), pp. 707-708.
  184. A. E. Willner and B. Hoanca, “Fixed and tunable management of fiber chromatic dispersion,” in Optical Fiber Telecommunications IVB, I.Kaminov and T.Li, eds. (Academic, 2002), pp. 642-724.
  185. T. Takahashi, T. Imai, and M. Aiki, “Automatic compensation technique for timewise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348-349 (1994). [CrossRef]
  186. G. Ishikawa and H. Ooi, “Polarization-mode dispersion sensitivity and monitoring in 40-Gb/s OTDM and 10-Gb/s NRZ transmission experiments,” in Proceedings of the Optical Fiber Communication Conference (1998), pp. 117-119.
  187. T. B. Anderson, S. D. Dods, C. Clarke, J. Bedo, and A. Kowalczyk, “Multi-impairment monitoring for photonic networks (invited),” in Proceedings of the European Conference on Optical Communications (2007), paper 3.5.1.
  188. S. D. Dods, T. B. Anderson, K. Clarke, M. Bakaul, and A. Kowalczyk, “Asynchronous sampling for optical performance monitoring,” in Proceedings of the Optical Fiber Communication Conference (2007), pp. 1-3.
  189. S. D. Dods and T. B. Anderson, “Optical performance monitoring technique using delay tap asynchronous waveform sampling,” Proceedings of the Optical Fiber Communication Conference (2006), p. 3.
  190. A. T. Bouloutas and A. Finkel, “Alarm correlation and fault identification in communication network,” IEEE Trans. Commun. 42, 523-533 (1994).
  191. C. Mas, O. Crochat, and J.-Y. Le Boudec, “Fault localization for optical networks,” in Proceedings of All-Optical Networking: Architecture, Control Management Issues (SPIE'99) (SPIE, 1998), pp. 408-419.
  192. R. H. Deng, A. A. Lazar, and W. Wang, “A probabilistic approach to fault diagnosis in linear lightwave networks,” IEEE J. Sel. Areas Commun. 11, 1438-1448 (1993).
  193. A. T. Bouloutas, G. W. Hart, and M. Schwartz, “Fault identification using a FSM model with unreliable partially observed data sequences,” IEEE Trans. Commun. 41, 1074-1083 (1993).
  194. R. Gardner and D. Harle, “Alarm correlation and network fault resolution using Kohonen self-organizing map,” in Proceedings of the Global Telecommunications Conference (GLOBECOM'97) (IEEE, 1997), pp. 1398-1402.
  195. C. Mas and P. Thiran, “An efficient algorithm for locating soft and hard failures in WDM networks,” IEEE J. Sel. Areas Commun. 18, 1900-1911 (2000). [CrossRef]
  196. C. Mas, P. Thiran, and J.-Y. Le Boudec, “Fault location at the WDM layer,” Photonic Network Commun. 1, 235-255 (1999).
  197. C. Mas, I. Tomkos, and O. K. Tonguz, “Failure location algorithm for transparent optical networks,” IEEE J. Sel. Areas Commun. 23, 1508-1519 (2005). [CrossRef]
  198. R. Rejeb, M. S. Leeson, and R. J. Green, “Cost optimization for multiple attack localization and identification in all-optical networks,” in Proceedings of the International Conference on Transparent Optical Networks (ICTON 2005) (2005), Vol. 1, pp. 101-106.
  199. R. Rejeb, M. S. Leeson, and R. J. Green, “Fault management extensions in support of GMPLS,” in Proceedings of the International Conference on Transparent Optical Networks (ICTON 2005) (2005), Vol. 2, pp. 433-436.
  200. E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” IETF RFC 3945 (Internet Engineering Task Force, 2004).
  201. A. Farrel, J-P. Vasseur, and J. Ash, “A path computation element (PCE)-based architecture,” IETF RFC 4655 (Internet Engineering Task Force, 2006).