OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Keren Bergman
  • Vol. 7, Iss. 5 — May. 1, 2008
  • pp: 513–532

Upstream access and local area networking in passive optical networks with a single reflective semiconductor optical amplifier

Nishaanthan Nadarajah and Ampalavanapillai Nirmalathas  »View Author Affiliations

Journal of Optical Networking, Vol. 7, Issue 5, pp. 513-532 (2008)

View Full Text Article

Acrobat PDF (1259 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and experimentally demonstrate three novel schemes for upstream access and local area network emulation among customers in a passive optical network using a single reflective semiconductor optical amplifier (RSOA) placed at the customer premises. The first scheme uses the broadband amplified spontaneous emission spectra of the RSOA for the transport of the local area network traffic among the customers, while the second scheme uses the optical carriers delivered to each optical network unit from the central office for the wavelength seeding of the RSOA to facilitate the transport of the local area network traffic. The third scheme describes the self-seeding process of the RSOA with the use of fiber Bragg gratings placed at the optical network unit to facilitate the upstream access and local area network traffic. These schemes for optical layer local area networking among the customers are experimentally demonstrated with more than 2Gbits/s downstream data, 1Gbit/s upstream access traffic, and 1Gbit/s local area network traffic. Moreover, the results of the experiments of all three schemes are compared further and discussed in terms of bandwidth of the local area network traffic, seeding optical power into the reflective semiconductor optical amplifier, and power budget.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4250) Fiber optics and optical communications : Networks

ToC Category:

Original Manuscript: November 16, 2007
Revised Manuscript: March 27, 2008
Manuscript Accepted: March 28, 2008
Published: April 30, 2008

Nishaanthan Nadarajah and Ampalavanapillai Nirmalathas, "Upstream access and local area networking in passive optical networks with a single reflective semiconductor optical amplifier," J. Opt. Netw. 7, 513-532 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. I. Radovanovic, W. van Etten, and H. Freriks, “Ethernet-based passive optical local-area networks for fiber-to-the-desk application,” J. Lightwave Technol. 21, 2534-2545 (2003).
  2. P. E. Green, “Fiber to the home: the next big broadband thing,” IEEE Commun. Mag. 42(9), 100-106 (2004). [CrossRef]
  3. G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Commun. Mag. 40(2), 66-73 (2002). [CrossRef]
  4. D. Kettler, H. Kafka, and D. Spears, “Driving fiber to the home,” IEEE Commun. Mag. 38(11), 106-110 (2000).
  5. G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 18, 125-143 (2000). [CrossRef]
  6. R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 16, 1546-1559 (1998). [CrossRef]
  7. R. Cohen, “On the establishment of an access VPN in broadband access networks,” IEEE Commun. Mag. 41(2), 156-163 (2003).
  8. R. Venkateswaran, “Virtual private networks,” IEEE Potentials 20, 11-15 (2001).
  9. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 22, 2582-2591 (2004). [CrossRef]
  10. IEEE Standard for Local and Metropolitan Area Networks, “Part 3: CSMA/CD access method and physical layer specifications,” IEEE Std 802.3ah (IEEE, 2004).
  11. B. Arnaud, J. Wu, and B. Kalali, “Customer-controlled and -managed optical networks,” J. Lightwave Technol. 21, 2804-2810 (2003).
  12. P. P. Iannone, K. C. Reichmann, A. Smiljanic, N. J. Frigo, A. H. Gnauck, L. H. Spiekman, and R. M. Derosier, “A transparent WDM network featuring shared virtual rings,” J. Lightwave Technol. 18, 1955-1963 (2000). [CrossRef]
  13. G. Kramer, B. Mukherjee, and A. Maislos, “Ethernet passive optical networks,” in IP over WDM: Building the Next Generation Optical Internet, S.Dixit, ed. (Wiley, 2003), Chap. 8, pp. 229-275.
  14. E. J. Hernandez-Valencia, “Architectures for broadband residential IP services over CATV networks,” IEEE Network 11, 36-43 (1997).
  15. A. V. Tran, C.-J. Chae, and R. S. Tucker, “Bandwidth efficient PON system for broadband access and local customer networking,” IEEE Photon. Technol. Lett. 18, 670-672 (2006).
  16. C.-J. Chae, P. Heesang, and E. Jong-Hoon, “An ATM PON system overlaid with a 155-Mb/s optical star network for customer networking and fiber to the premises,” IEEE Photon. Technol. Lett. 13, 1133-1135 (2001). [CrossRef]
  17. C.-J. Chae, L. Seung-Tak, K. Geun-Young, and P. Heesang, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photon. Technol. Lett. 11, 1686-1688 (1999). [CrossRef]
  18. E. Wong and C.-J. Chae, “CSMA/CD-based Ethernet passive optical network with optical internetworking capability among users,” IEEE Photon. Technol. Lett. 16, 2195-2197 (2004). [CrossRef]
  19. N. Nadarajah, M. Attygalle, A. Nirmalathas, and E. Wong, “A novel local area network emulation technique on passive optical networks,” IEEE Photon. Technol. Lett. 17, 1121-1123 (2005). [CrossRef]
  20. N. Nadarajah, M. Attygalle, E. Wong, and A. Nirmalathas, “Novel schemes for local area network emulation in passive optical networks with RF subcarrier multiplexed customer traffic,” J. Lightwave Technol. 23, 2974-2983 (2005).
  21. J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photon. Technol. Lett. 17, 250-252 (2005). [CrossRef]
  22. H.-C. Kwon, Y.-Y. Won, and S.-K. Han, “Bidirectional SCM transmission using a noise-suppressed Fabry-Pérot laser diode and a reflective semiconductor optical amplifier in a WDM/SCM-PON link,” IEEE Photon. Technol. Lett. 19, 858-860 (2007). [CrossRef]
  23. W. Le, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 2460-2462 (2005). [CrossRef]
  24. R. K. Staubli and P. Gysel, “Crosstalk penalties due to coherent Rayleigh noise in bidirectional optical communication systems,” J. Lightwave Technol. 9, 375-380 (1991). [CrossRef]
  25. A. Hartog and M. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol. 2, 76-82 (1984).
  26. H. Mickelsson, E. Sundberg, P. Strömgren, and Y. Fujimoto, “Single or dual fiber for 100Mb/s over SMIF?” http://www.ieee802.org/3/efm/public/jan02/mickelsson_2_0102.pdf.
  27. C.-J. Chae, E. Wong, and R. S. Tucker, “Optical CSMA/CD media access scheme for Ethernet over passive optical network,” IEEE Photon. Technol. Lett. 14, 711-713 (2002). [CrossRef]
  28. B. N. Desai, N. J. Frigo, A. Smiljanic, K. C. Reichmann, P. P. Iannone, and R. S. Roman, “An optical implementation of a packet-based (Ethernet) MAC in a WDM passive optical network overlay,” in Optical Fiber Communication Conference, 2001 OSA Technical Digest Series (Optical Society of America, 2001) paper WN5.
  29. E. Wong and C.-J. Chae, “Performance of differentiated services in a CSMA/CD-based Ethernet over passive optical network,” in Proceedings of the 17th Annual Lasers and Electro Optics Society Meeting (IEEE, 2004), pp. 641-642.
  30. E. Wong and C.-J. Chae, “Efficient dynamic bandwidth allocation based on upstream broadcast in Ethernet passive optical networks,” in Optical Fiber Communications Conference and Exposition and the National Fiber Optics Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OF16.
  31. E. Wong and C.-J. Chae, “Support of differentiated services in Ethernet passive optical networks via upstream broadcast dynamic bandwidth allocation scheme,” in Proceedings of 4th International Conference on Optical Internet (2005), pp. 494-499.
  32. K. S. Shanmugam, Digital and Analog Communication Systems (Wiley, 1985).
  33. R. Ramaswami, Optical Networks--A Practical Perspective (Morgan Kaufmann, 1998).
  34. T. Demeechai and A. B. Sharma, “Beat noise in a non-coherent optical CDMA system,” in Proceedings of the 8th International Conference on Communication Systems (2002), Vol. 2, pp. 899-902.
  35. R. H. Wentworth, “Theoretical noise performance of coherence-multiplexed interferometric sensors,” J. Lightwave Technol. 7, 941-956 (1989). [CrossRef]
  36. J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett. 5, 1458-1461 (1993). [CrossRef]
  37. R. D. Feldman, K.-Y. Liou, G. Raybon, and R. F. Austin, “Reduction of optical beat interference in a subcarrier multiple-access passive optical network through the use of an amplified light-emitting diode,” IEEE Photon. Technol. Lett. 8, 116-118 (1996). [CrossRef]
  38. J. L. Gimlett and N. K. Cheung, “Dispersion penalty analysis for LED/single-mode fiber transmission systems,” J. Lightwave Technol. LT-4, 1381-1392 (1986).
  39. G. J. Pendock, M. J. L. Cahill, and D. D. Sampson, “Multi-gigabit per second demonstration of photonic code division multiplexing,” Electron. Lett. 31, 819-820 (1995). [CrossRef]
  40. G. J. Pendock and D. D. Sampson, “Transmission performance of high bit rate spectrum-sliced WDM systems,” J. Lightwave Technol. 14, 2141-2148 (1997). [CrossRef]
  41. K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON using light-emitting diodes spectrum-sliced with cyclic arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 16, 2380-2382 (2004).
  42. J.-G. Zhang and G. Picchi, “Forward error-correction codes in incoherent optical fibre CDMA networks,” Electron. Lett. 29, 1460-1462 (1993). [CrossRef]
  43. H. Lundqvist and G. Karlsson, “On error-correction coding for CDMA PON,” J. Lightwave Technol. 23, 2342-2351 (2005).
  44. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 7, 328-333 (2001). [CrossRef]
  45. ITU Recommendatioon G.984.2, “Gigabit-capable passive optical networks (GPON): physical media dependent (PMD) layer specification,” www.itu.int/itudoc/itu-t/aap/sg/5aap/history/g984.2/g984.2.htm.
  46. B.-W. Kim, “WDM PON for next generation access in Korea,” in 3rd International Workshop on the Future of Optical Networking, Proceedings of the 12th Optoelectronics and Communications Conference and 16th International Conference on Integrated Optics and Optical Fiber Communication (2007), pp. 75-85.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited