OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Keren Bergman
  • Vol. 7, Iss. 7 — Jul. 1, 2008
  • pp: 692–703

Performance analysis of quadratic congruence codes using superstructured fiber Bragg gratings for a flexible data rate coherent DS-OCDMA system

Ihsan Fsaifes, Catherine Lepers, Renaud Gabet, Marc Douay, and Philippe Gallion  »View Author Affiliations

Journal of Optical Networking, Vol. 7, Issue 7, pp. 692-703 (2008)

View Full Text Article

Acrobat PDF (1008 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of a coherent direct sequence optical code division multiple access (DS-OCDMA) system using quadratic congruence codes implemented with superstructured fiber Bragg gratings is experimentally analyzed. We point out that nonperiodic and sparse quadratic congruence codes reduce multipath beat noise and intersymbol interference, respectively. These two properties of the structure of the quadratic congruence codes are shown to improve the bit-error-rate (BER) performance of the coherent system. As a result, we demonstrate that the performance enhancement of the coherent DS-OCDMA system allows the data bit rate of the system to be varied from 1 Gbit/sto2.5 Gbits/s and the receiver bandwidth to be decreased from 15 GHzto5 GHz respecting the low-cost requirement of the optical access network. These data bit rate and receiver bandwidth performances are achieved with moderate BER penalty.

© 2008 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.4230) Fiber optics and optical communications : Multiplexing

ToC Category:
Research Papers

Original Manuscript: January 28, 2008
Revised Manuscript: May 28, 2008
Manuscript Accepted: May 28, 2008
Published: June 27, 2008

Ihsan Fsaifes, Catherine Lepers, Renaud Gabet, Marc Douay, and Philippe Gallion, "Performance analysis of quadratic congruence codes using superstructured fiber Bragg gratings for a flexible data rate coherent DS-OCDMA system," J. Opt. Netw. 7, 692-703 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. A. Salehi, “Emerging OCDMA communication systems and data networks,” J. Opt. Netw. 6, 1138-1178 (2007). [CrossRef]
  2. S. J. B. Yoo, J. P. Heritage, V. Hernandez, R. Scott, W. Cong, N. Fontaine, R. Broeke, J. Cao, S.-W. Seo, J.-H. Baek, F. Soares, Y. Du, C. Yang, W. Jiang, K. Aihara, Z. Ding, B. Kolner, A.-V. Pham, S. Lin, F. Olsson, Y. Sun, S. Lourdudoss, K. Y. Liou, S. N. G. Chu, R. Hamm, B. Patel, W. S. Hobson, J. R. Lothian, S. Vatanapradit, L. Gruezke, W. T. Tsang, M. Shearn, and A. Scherer, “Spectral phase encoded time spread optical code division multiple access technology for next generation communication networks [Invited],” J. Opt. Netw. 6, 1210-1227 (2007). [CrossRef]
  3. J. Penon, Z. El Sahn, L. A. Rusch, and S. LaRochelle, “Spectral-amplitude-coded OCDMA optimized for a realistic FBG frequency response,” J. Lightwave Technol. 25, 1256-1263 (2007). [CrossRef]
  4. C.-S. Brès, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating,” IEEE Photon. Technol. Lett. 18, 889-891 (2006). [CrossRef]
  5. S. M. R. Motaghian Nezam, P. Saghari, A. E. Willner, R. Omrani, and P. Vijay Kumar, “Experimental demonstration of OCDMA transmission using a three-dimensional (time-wavelength-polarization) codeset,” J. Lightwave Technol. 23, 3282-3289 (2005). [CrossRef]
  6. L. Tancevski and L. A. Rush, “Impact of beat noise on the performance of 2-D optical CDMA systems,” IEEE Commun. Lett. 4, 264-266 (2000). [CrossRef]
  7. S. Shen, A. M. Weiner, G. D. Sucha, and M. L. Stock, “Bit error rate performance of ultrashort-pulse optical OCDMA detection under multi-access interferences,” Electron. Lett. 36, 1795-1796 (2002). [CrossRef]
  8. X. Wang and K. Kitayama, “Analysis of beat noise in coherent and incoherent time-spreading OCDMA,” J. Lightwave Technol. 22, 2226-2235 (2004). [CrossRef]
  9. I. Fsaifes, C. Lepers, M. Lourdiane, P. Gallion, V. Beugin, and P. Guignard, “Source coherence impairments in a direct detection direct sequence optical code division multiple access system,” Appl. Opt. 46, 456-462 (2007). [CrossRef]
  10. S. V. Maric, “New family of algebraically designed optical orthogonal codes for use in CDMA fiber optic networks,” Electron. Lett. 29, 538-539 (1993). [CrossRef]
  11. C.-S. Brès, Y.-K. Huang, D. Rand, I. Glesk, P. R. Prucnal, T. Bazan, C. Michie, D. Harle, and I. Andonovic, “On the experimental characterization of beat noise in 2-D time-spreading wavelength-hopping OCDMA systems,” IEEE Photon. Technol. Lett. 18, 2314-2316 (2006). [CrossRef]
  12. R. Adams and L. R. Chen, “Effect of encoder-decoder mismatch due to wavelength and time misalignments on the performance of two-dimensional wavelength-time optical code division multiple access systems,” Appl. Opt. 44, 4368-4374 (2005). [CrossRef]
  13. I. Fsaifes, C. Lepers, A.-F. Obaton, and P. Gallion, “DS-OCDMA encoder/decoder performance analysis using optical low coherence reflectometry,” J. Lightwave Technol. 24, 3121-3128 (2006). [CrossRef]
  14. R. P. Scott, K. Li, W. Cong, V. J. Hernandez, B. H. Kolner, J. P. Heritage, and S. J. B. Yoo, “Demonstration of an error-free 4/spl times/10 Gb/s multiuser SPECTS O-CDMA network testbed,” IEEE Photon. Technol. Lett. 16, 2186-2188 (2004). [CrossRef]
  15. X. Wang, N. Wada, and K.-I. Kitayama, “Performance degradation in coherent OCDMA due to receivers bandwidth limit and improvement by using optical thresholding,” in The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2005), pp. 638-639.
  16. J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A grating-based OCDMA coding-decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction,” J. Lightwave Technol. 20, 36-46 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited