OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Keren Bergman
  • Vol. 8, Iss. 2 — Feb. 1, 2009
  • pp: 201–214

Mitigation strategy for transmission impairments in millimeter-wave radio-over-fiber networks [Invited]

Christina Lim, Ampalavanapillai Nirmalathas, Masuduzzaman Bakaul, Ka-Lun Lee, Dalma Novak, and Rod Waterhouse  »View Author Affiliations


Journal of Optical Networking, Vol. 8, Issue 2, pp. 201-214 (2009)
http://dx.doi.org/10.1364/JON.8.000201


View Full Text Article

Acrobat PDF (1158 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hybrid fiber-wireless networks for fixed wireless access operating in the millimeter-wave (mm-wave) frequency region have been actively pursued to provide ultrahigh bandwidth for untethered connectivity. Moving the radio operating frequency into the mm-wave region overcomes the spectral congestion in the lower microwave region and is also capable of providing high-capacity broadband wireless services in a picocellular or microcellular architecture. Optical fiber backhaul provides the broadband interconnectivity between a centralized location and a large number of high-throughput antenna base stations necessary in such an architecture. The transportation of mm-wave wireless signals within the hybrid network is subject to numerous impairments ranging from low conversion efficiency to fiber chromatic dispersion and also to signal degradation due to nonlinearity along the link. One of the major technical challenges in implementing these networks lies in the mitigation of these impairments that the wireless signals experience while traversing the links. In this paper, we present an overview of the different techniques and schemes to overcome some of the impairments for transporting mm-wave signals over optical fibers.

© 2009 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Radio-over-Optical-Fiber Networks

History
Original Manuscript: September 30, 2008
Revised Manuscript: November 26, 2008
Manuscript Accepted: December 4, 2008
Published: January 27, 2009

Virtual Issues
(2009) Advances in Optics and Photonics
Radio-over-Optical-Fiber Networks (2008) Journal of Optical Networking

Citation
Christina Lim, Ampalavanapillai Nirmalathas, Masuduzzaman Bakaul, Ka-Lun Lee, Dalma Novak, and Rod Waterhouse, "Mitigation strategy for transmission impairments in millimeter-wave radio-over-fiber networks [Invited]," J. Opt. Netw. 8, 201-214 (2009)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jon-8-2-201


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Seeds and K. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628-4241 (2006). [CrossRef]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319-330 (2007).
  3. A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Progress in millimeter-wave fiber-radio access networks,” in Millimeter Waves in Communication Systems, Innovative Technology Series Information Systems and Networks, M.Ney, ed. (Hermes Penton Science Ltd., 2003), pp. 43-67.
  4. T. Kurniawan, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Performance analysis of optimized millimeter-wave fiber radio links,” IEEE Trans. Microwave Theory Tech. 54, 921-928 (2006).
  5. W. H. Chen and W. I. Way, “Multichannel single-sideband SCM/DWDM transmission systems,” J. Lightwave Technol. 7, 1679-1693 (2004).
  6. S.-H. Park and Y.-W. Choi, “Significant suppression of the third intermodulation distortion in transmission system with optical feedback forward linearized transmitter,” IEEE Photon. Technol. Lett. 17, 1280-1282 (2005).
  7. T. Ismail, C.-P. Liu, J. E. Mitchell, and A. J. Seeds, “High-dynamic-range wireless-over-fiber link using feedforward linearization,” J. Lightwave Technol. 25, 3274-3282 (2007).
  8. S. H. Lee, J. M. Kang, Y. Y. Won, H. C. Kwon, and S. K. Han, “Linearization of RoF optical source by using light-injected gain modulation,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 265-268.
  9. L. Roselli, V. Borgioni, F. Zepparelli, F. Ambrosi, M. Comez, P. Faccin, and A. Cassini, “Analog laser predistortion for multiservice radio-over-fiber systems,” J. Lightwave Technol. 21, 1211-1223 (2003). [CrossRef]
  10. A. R. Shah and B. Jalali, “Adaptive equalisation for broadband predistortion linearisation of optical transmitters,” IEE Proc.: Optoelectron. 152, 16-32 (2005). [CrossRef]
  11. A. Djupsjobacka, “A linearization concept for integrated-optic modulators,” IEEE Photon. Technol. Lett. 4, 869-872 (1992).
  12. H. Skeie and R. Johnson, “Linearization of electro-optic modulators by a cascade coupling of phase modulating electrodes,” Proc. SPIE 1583, 153-164 (1991). [CrossRef]
  13. S. Korotky and R. DeRidder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377-1381 (1990). [CrossRef]
  14. K. J. Williams and R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett. 30, 1965-1966 (1994). [CrossRef]
  15. S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944-946 (2000). [CrossRef]
  16. M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157-2158 (1994). [CrossRef]
  17. R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier substraction,” IEEE Photon. Technol. Lett. 7, 218-220 (1995). [CrossRef]
  18. H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “25-GHz channel spacing DWDM multiplexing using an arrayed waveguide grating for 60-GHz band radio-on-fiber systems,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 287-290.
  19. G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. QE-20, 1208-1216 (1984). [CrossRef]
  20. H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31, 1848-1849 (1995). [CrossRef]
  21. G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33, 74-75 (1997). [CrossRef]
  22. R. A. Griffin, P. M. Lane, and J. J. O'Reilly, “Dispersion-tolerant subcarrier data modulation of optical millimetre-wave signals,” Electron. Lett. 32, 2258-2260 (1996). [CrossRef]
  23. J. M. Fuster, J. Marti, and J. L. Corral, “Chromatic dispersion effects in electro-optical upconverted millimetre-wave fibre optic links,” Electron. Lett. 33, 1969-1970 (1997). [CrossRef]
  24. Z. Jia, J. Yu, and G.-K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18, 1726-1728 (2006). [CrossRef]
  25. J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33, 512-513 (1997). [CrossRef]
  26. K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5, 949-951 (1993). [CrossRef]
  27. E. Vourch, D. Le Berre, and D. Herve, “Lightwave single sideband wavelength self-tunable filter using InP:Fe crystal for fiber-wireless systems,” IEEE Photon. Technol. Lett. 14, 194-196 (2002). [CrossRef]
  28. J. Capmany, D. Pastor, P. Munoz, S. Sales, B. Ortega, and A. Martinez, “WDM-SSB generation and dispersion mitigation in radio over fiber systems with improved performance using an AWG multiplexer with flat top resonances,” in International Topical Meeting on Microwave Photonics (IEEE, 2003), pp. 39-42.
  29. J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33, 1170-1171 (1997). [CrossRef]
  30. V. Polo, J. Marti, F. Ramos, and D. Moodie, “Mitigation of chromatic dispersion effects employing electroabsorption modulator-based transmitters,” IEEE Photon. Technol. Lett. 7, 883-885 (1999).
  31. J. A. J. Fells, M. A. Gibbon, I. H. White, G. H. B. Thompson, R. V. Penty, C. J. Armistead, E. M. Kimber, D. J. Moule, and E. J. Thrush, “Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,” Electron. Lett. 30, 1168-1169 (1994). [CrossRef]
  32. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microwave Theory Tech. 44, 1716-1724 (1996). [CrossRef]
  33. R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microwave Theory Tech. 43, 2263-2269 (1995). [CrossRef]
  34. F. Ramos, J. Marti, V. Polo, and J. M. Fuster, “On the use of fiber-induced self-phase modulation to reduce chromatic dispersion effects in microwave/millimeter-wave optical systems,” IEEE Photon. Technol. Lett. 10, 1473-1475 (1998). [CrossRef]
  35. F. Ramos, J. Marti, and V. Polo, “Compensation of chromatic dispersion effects in microwave/millimeter-wave optical systems using four-wave-mixing induced in dispersion-shifted fibers,” IEEE Photon. Technol. Lett. 11, 1171-1173 (1999). [CrossRef]
  36. P. C. Won, W. Zhang, and J. A. R. Williams, “Self-phase modulation dependent dispersion mitigation in high power SSB and DSB + dispersion compensated modulated radio-over-fiber links,” IEEE MTT-S International Microwave Symposium Digest (IEEE, 2006), pp. 1947-1950.
  37. J. Marti and F. Ramos, “Compensation for dispersion-induced nonlinear distortion in subcarrier systems using optical-phase conjugation,” Electron. Lett. 33, 792-794 (1997). [CrossRef]
  38. E. Vergnol, D. Tanguy, J. F. Cadiou, A. Carenco, and E. Penard, “Multi-carrier and m-QAM modulation based on integrated single side band lighwave source,” in Optical Fiber Communication Conference (Optical Society of America, 1999), pp. 224-226.
  39. G. H. Smith and D. Novak, “Broadband millimeter-wave fiber-radio network incorporating remote up/downconversion,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1998), pp. 1509-1512.
  40. P. Gamage, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Experimental demonstration of digitized RF transport over optical fiber links,” in International Topical Meeting on Microwave Photonics, 2008. Jointly Held with the 2008 Asia-Pacific Microwave Photonics Conference. MWP/APMP 2008 (IEEE, 2008), pp. 15-18.
  41. J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, and L. Chen, “Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation,” J. Lightwave Technol. 25, 3244-3256 (2007).
  42. J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulator,” IEEE Photon. Technol. Lett. 18, 265-267 (2006). [CrossRef]
  43. L. T. Nichols and R. D. Esman, “Single sideband modulation techniques and applications,” in Optical Fiber Communication Conference (Optical Society of America, 1999), pp. 332-334.
  44. C. Lim, K. L. Lee, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of chromatic dispersion on 60 GHz radio-over-fiber transmission,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2008), pp. 89-90.
  45. C. Lim, A. Nirmalathas, D. Novak, and R. Waterhouse, “Impact of ASE on phase noise in LMDS incorporating optical fibre backbones,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 148-151.
  46. C. G. Schaffer, F. H. Lubeck, R. P. Braun, G. Grosskopf, and F. Schmidt, “Compensation of fiber dispersion in an optical mm-wave system in the 60 GHz-band,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 1998), pp. 1529-1532.
  47. C. G. Schaffer, M. Sauer, K. Kojucharow, and H. Kaluzni, “Increasing the channel number in WDM mm-wave systems by spectral overlap,” in International Topical Meeting on Microwave Photonics (IEEE, 2000), pp. 164-167.
  48. C. Lim, A. Nirmalathas, D. Novak, R. S. Tucker, and R. B. Waterhouse, “Technique for increasing optical spectral efficiency in millimeter-wave WDM fiber-radio,” Electron. Lett. 37, 1043-1045 (2001). [CrossRef]
  49. H. Toda, T. Yamashita, K.-I. Kitayama, and T. Kuri, “A DWDM mm-wave fiber-radio system by optical frequency interleaving for high spectral efficiency,” in International Topical Meeting on Microwave Photonics 2001 (IEEE, 2002), pp. 85-88.
  50. C. Lim, A. Nirmalathas, D. Novak, and R. B. Waterhouse, “Capacity analysis for WDM fiber-radio backbones with star-tree and ring architecture incorporating wavelength interleaving,” J. Lightwave Technol. 21, 3308-3315 (2003). [CrossRef]
  51. C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. Besley, and N. Baker, “Wavelength interleaved OADMs incorporating optimized multiple phase-shifted FBGs for fiber-radio systems,” J. Lightwave Technol. 21, 32-39 (2003). [CrossRef]
  52. M. Bakaul, A. Nirmalathas, and C. Lim, “Multifunctional WDM optical interface for millimeter-wave fiber-radio antenna base station,” J. Lightwave Technol. 23, 1210-1218 (2005). [CrossRef]
  53. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. B. Waterhouse, “Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks” J. Lightwave Technol. 24, 3341-3352 (2006). [CrossRef]
  54. H. Toda, T. Yamashita, T. Kuri, and K.-I. Kitayama, “Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems,” J. Lightwave Technol. 21, 1735-1741 (2003). [CrossRef]
  55. P. A. Gamage, A. Nirmalathas, C. Lim, M. Bakaul, D. Novak, and R. Waterhouse, “Efficient transmission scheme for AWG-based DWDM millimeter-wave fiber-radio systems,” IEEE Photon. Technol. Lett. 19, 206-208 (2007).
  56. M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17, 190-192 (2005). [CrossRef]
  57. M. Attygalle, C. Lim, and A. Nirmalathas, “Extending optical transmission distance in fiber wireless links using passive filtering in conjunction with optimized modulation,” J. Lightwave Technol. 24, 1703-1709 (2006). [CrossRef]
  58. D. Wake, D. Johansson, and D. G. Moodie, “Passive pico-cell--new in wireless network infrastructure,” Electron. Lett. 33, 404-406 (1997). [CrossRef]
  59. A. Stohr, K. Kitayama, and D. Jager, “Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector,” IEEE Trans. Microwave Theory Tech. 47, 1338-1341 (1999). [CrossRef]
  60. K. Kitayama, A. Stohr, T. Kuri, R. Heinzelmann, D. Jager, and Y. Takahashi, “An approach to single optical component antenna base stations for broad-band millimeter-wave fiber-radio access systems,” IEEE Trans. Microwave Theory Tech. 48, 2588-2595 (2000). [CrossRef]
  61. L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18, 2056-2058 (2006). [CrossRef]
  62. J. Yu, Z. Jia, T. Wang, and G.-K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection,” IEEE Photon. Technol. Lett. 19, 140-142 (2007).
  63. A. Nirmalathas, D. Novak, C. Lim, and R. B. Waterhouse, “Wavelength re-use in the WDM optical interface of a millimeter-wave fiber wireless antenna base-station,” IEEE Trans. Microwave Theory Tech. 49, 2006-2012 (2001). [CrossRef]
  64. L. S. Fock and R. S. Tucker, “Simultaneous reduction of intensity noise and distortion in semiconductor lasers by feed-forward compensation,” Electron. Lett. 27, 1297-1299 (1991).
  65. C. Lim, A. Nirmalathas, K. L. Lee, D. Novak, and R. Waterhouse, “Intermodulation distortion improvement for fiber-radio applications incorporating OSSB+C modulation in an optical integrated access environment,” J. Lightwave Technol. 25, 1602-1612 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited