OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Keren Bergman
  • Vol. 8, Iss. 2 — Feb. 1, 2009
  • pp: 215–224

Scalable optical switches for computing applications [Invited]

Ian White, Eng Tin Aw, Kevin Williams, Haibo Wang, Adrian Wonfor, and Richard Penty  »View Author Affiliations


Journal of Optical Networking, Vol. 8, Issue 2, pp. 215-224 (2009)
http://dx.doi.org/10.1364/JON.8.000215


View Full Text Article

Acrobat PDF (660 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scalable photonic interconnection network architecture is proposed whereby a Clos network is populated with broadcast-and-select stages. This enables the efficient exploitation of an emerging class of photonic integrated switch fabric. A low distortion space switch technology based on recently demonstrated quantum-dot semiconductor optical amplifier technology, which can be operated uncooled, is used as the base switch element. The viability of these switches in cascaded networks is reviewed, and predictions are made through detailed physical layer simulation to explore the potential for larger-scale network connectivity. Optical signal degradation is estimated as a function of data capacity and network size. Power efficiency and physical layer complexity are addressed for high end-to-end bandwidth, nanosecond-reconfigurable switch fabrics, to highlight the potential for scaling to several tens of connections. The proposed architecture is envisaged to facilitate high-capacity, low-latency switching suited to computing systems, backplanes, and data networks. Broadband operation through wavelength division multiplexing is studied to identify practical interconnection networks scalable to 100 Gbits/s per path and a power consumption of the order of 20 mW/(Gbits/s) for a 64×64 size interconnection network.

© 2009 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Optical Routers

History
Original Manuscript: July 29, 2008
Revised Manuscript: December 18, 2008
Manuscript Accepted: December 19, 2008
Published: January 28, 2009

Virtual Issues
Optical Routers (2008) Journal of Optical Networking

Citation
Ian White, Eng Tin Aw, Kevin Williams, Haibo Wang, Adrian Wonfor, and Richard Penty, "Scalable optical switches for computing applications [Invited]," J. Opt. Netw. 8, 215-224 (2009)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jon-8-2-215


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49, 755-775 (2005).
  2. D. Sadot and I. Elhanany, “Optical switching speed requirements for terabit/second packet over WDM networks,” IEEE Photon. Technol. Lett. 12, 440-442 (2000). [CrossRef]
  3. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728-749 (2000). [CrossRef]
  4. D. Huang, T. Sze, A. Landin, R. Lytel, and H. L. Davidson, “Optical interconnects: out of the box forever?” IEEE J. Sel. Top. Quantum Electron. 9, 614-623 (2003). [CrossRef]
  5. I. O'Connor, “Optical solutions for system-level interconnect,” in Proceedings of the 2004 International Workshop on System Level Interconnect Prediction (Association for Computing Machinery, 2004), pp. 79-88.
  6. L. Schares, J. A. Kash, F. E. Doany, C. Schow, C. Schuster, D. M. Kuchta, P. K. Pepeljugoski, J. M. Trewhella, C. W. Baks, R. A. John, L. Shan, Y. H. Kwark, R. A. Budd, P. Chiniwalla, F. R. Libsch, J. Rosner, C. K. Tsang, C. S. Patel, J. D. Schaub, R. Dangel, F. Horst, B. J. Offrein, D. Kucharski, D. Guckenberger, S. Hegde, H. Nyikal, C. K. Lin, A. Tandon, G. R. Trott, M. Nystrom, D. P. Bour, M. R. T. Tan, and D. W. Dolfi, “Terabus: terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Top. Quantum Electron. 12, 1032-1044 (2006). [CrossRef]
  7. T. Lin, K. A. Williams, R. V. Penty, I. H. White, and M. Glick, “Capacity scaling in a multihost wavelength-striped SOA-based switch fabric,” J. Lightwave Technol. 25, 655-663 (2007). [CrossRef]
  8. A. Shacham, B. Small, O. Liboiron-Ladouceur, and K. Bergman, “A fully implemented 12×12 data vortex optical packet switching interconnection network,” J. Lightwave Technol. 23, 3066-3075 (2005). [CrossRef]
  9. R. Hemenway, R. R. Grzybowski, C. Minkenberg, and R. Luijten, “Optical-packet-switched interconnect for supercomputer applications [Invited],” J. Opt. Netw. 3, 900-913 (2004). [CrossRef]
  10. A. Shacham and K. Bergman, “Building ultralow-latency interconnection networks using photonic integration,” IEEE MICRO 27, 6-20 (2007).
  11. E. T. Aw, H. Wang, M. G. Thompson, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, and A. R. Kovsh, “Uncooled 2×2 quantum dot semiconductor optical amplifier based switch,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CME6.
  12. M. Renaud, M. Bachmann, and M. Erman, “Semiconductor optical space switches,” IEEE J. Sel. Top. Quantum Electron. 2, 277-288 (1996). [CrossRef]
  13. K. A. Williams, “Integrated semiconductor-optical-amplifier-based switch fabrics for high-capacity interconnects [Invited],” J. Lightwave Technol. 6, 189-199 (2007).
  14. P. J. Duthie and M. J. Wale, “16×16 single chip optical switch array in lithium niobate,” Electron. Lett. 27, 1265-1266 (1991).
  15. H. Okayama and M. Kawahara, “Prototype 32×32 optical switch matrix,” Electron. Lett. 30, 1128-1129 (1994). [CrossRef]
  16. E. J. Murphy, T. O. Murphy, A. F. Ambrose, R. W. Irvin, B. H. Lee, P. Peng, G. W. Richards, and A. Yorinks, “16×16 strictly nonblocking guided-wave optical switching system,” J. Lightwave Technol. 14, 352-358 (1996).
  17. K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, “First 8×8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers,” Electron. Lett. 28, 441-443 (1992).
  18. R. F. Kalman, L. G. Kazovsky, and J. W. Goodman, “Space division switches based on semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 4, 1048-1051 (1992). [CrossRef]
  19. K. A. Williams, G. F. Roberts, T. Lin, R. V. Penty, I. H. White, M. Glick, and D. McAuley, “Integrated optical 2×2 switch for wavelength multiplexed interconnects,” IEEE J. Sel. Top. Quantum Electron. 11, 78-85 (2005). [CrossRef]
  20. W. Kabacinski, Nonblocking Electronic and Photonic Switching Fabrics (Springer, 2005).
  21. D. Wolfson, “Detailed theoretical investigation and comparison of the cascadability of conventional and gain-clamped SOA gates in multiwavelength optical networks,” IEEE Photon. Technol. Lett. 11, 1494-1496 (1999). [CrossRef]
  22. S. Liu, K. A. Williams, T. Lin, M. G. Thompson, C. K. Yow, A. Wonfor, R. V. Penty, I. H. White, F. Hopfer, M. Lämmlin, and D. Bimberg, “Cascaded performance of quantum dot semiconductor optical amplifier in a recirculating loop,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuM4.
  23. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gbs−1 directly modulated lasers and 40 Gbs−1 signal-regenerative amplifiers,” J. Phys. D 38, 2126-2134 (2005). [CrossRef]
  24. A. Albores-Mejia, K. A. Williams, T. de Vries, E. Smalbrugge, Y. S. Oei, M. K. Smit, A. Anantathanasarn, and R. Nötzel, “Scalable quantum dot optical switch matrix in the 1.55 μm wavelength range,” Photonics in Switching (IEICE Communication Society, 2008), paper D-06-4.
  25. C. Clos, “A study of non-blocking switching networks,” Bell Syst. Tech. J. 32, 406-424 (1953).
  26. R. A. Spanke and V. E. Beneš, “N-stage planar optical permutation network,” Appl. Opt. 26, 1226-1229 (1987).
  27. V. Beneš, “On rearrangeable three stage connecting networks,” Bell Syst. Tech. J. XLI, 1481-1492 (1962).
  28. S. Liu, X. Hu, M. Thompson, R. Sellin, K. Williams, R. Penty, I. White, and A. Kovsh, “Low penalty monolithic 2×2 quantum dot switch,” in Proceedings of European Conference on Optical Communications (SEE, 2006), paper Th4.5.6.
  29. J. E. Carroll, J. E. A. Whiteaway, and R. G. B. Plumb, Distributed Feedback Semiconductor Lasers (Institution of Electrical Engineers, 1998).
  30. K. A. Williams, “Integrated multi-wavelength routing circuits for high capacity switched interconnects,” in Proceedings LEOS Benelux Annual Meeting (IEEE LEOS, 2007), pp. 155-158.
  31. G. Roberts, R. V. Penty, I. H. White, A. West, and S. Moore, “Multi-wavelength data encoding for improved input power dynamic range in semiconductor optical amplifier switches,” in The 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2005), pp. 739-740.
  32. P. S. Cho and J. B. Khurgin, “Suppression of cross-gain modulation in SOA using RZ-DPSK modulation format,” IEEE Photon. Technol. Lett. 15, 162-164 (2003). [CrossRef]
  33. I. H. White, K. A. Williams, R. V. Penty, T. Lin, A. Wonfor, E. T. Aw, M. Glick, M. Dales, and D. McAuley, “Control architecture for high capacity multistage photonic switch circuits,” J. Opt. Netw. 6, 180-188 (2007).
  34. H. G. Bukkems, C. G. P. Herben, M. K. Smit, F. H. Groen, and I. Moerma, “Minimization of the loss of intersecting waveguides in InP-based photonic integrated circuits,” IEEE Photon. Technol. Lett. 11, 1420-1422 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited