OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editor: Keren Bergman
  • Vol. 8, Iss. 5 — May. 1, 2009
  • pp: 404–428

Photonics in switching: enabling technologies and subsystem design

Kyriakos Vlachos, Carla Raffaelli, Slavisa Aleksic, Nicola Andriolli, Dimitris Apostolopoulos, Hercules Avramopoulos, Didier Erasme, Dimitris Klonidis, Martin Nordal Petersen, Mirco Scaffardi, Karsten Schulze, Maria Spiropoulou, Stelios Sygletos, Ioannis Tomkos, Carmen Vazquez, Olga Zouraraki, and Fabio Neri  »View Author Affiliations


Journal of Optical Networking, Vol. 8, Issue 5, pp. 404-428 (2009)
http://dx.doi.org/10.1364/JON.8.000404


View Full Text Article

Acrobat PDF (2287 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes recent research activities and results in the area of photonic switching carried out within the framework of the EU-funded e-Photon/ONe+ network of excellence, Virtual Department on Optical Switching. Technology aspects of photonics in switching and, in particular, recent advances in wavelength conversion, ring resonators, and packet switching and processing subsystems are presented as the building blocks for the implementation of a high-performance router for the next-generation Internet.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4510) Fiber optics and optical communications : Optical communications
(060.1155) Fiber optics and optical communications : All-optical networks

ToC Category:
Optical Routers

History
Original Manuscript: June 25, 2008
Revised Manuscript: October 14, 2008
Manuscript Accepted: February 13, 2009
Published: April 7, 2009

Virtual Issues
Optical Routers (2008) Journal of Optical Networking

Citation
Kyriakos Vlachos, Carla Raffaelli, Slavisa Aleksic, Nicola Andriolli, Dimitris Apostolopoulos, Hercules Avramopoulos, Didier Erasme, Dimitris Klonidis, Martin Nordal Petersen, Mirco Scaffardi, Karsten Schulze, Maria Spiropoulou, Stelios Sygletos, Ioannis Tomkos, Carmen Vazquez, Olga Zouraraki, and Fabio Neri, "Photonics in switching: enabling technologies and subsystem design," J. Opt. Netw. 8, 404-428 (2009)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jon-8-5-404


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Ramaswami and K. Sivarajan, Optical Networks: a Practical Perspective (Morgan Kaufmann, 1998).
  2. M. Renaud, F. Masetti, C. Guillemot, and B. Bostica, “Network and system concepts for optical packet switching,” IEEE Commun. Mag. 35(4), 96-102 (1997).
  3. K. Vlachos, N. Pleros, C. Bintjas, G. Theophilopoulos, and H. Avramopoulos, “Ultrafast time-domain technology and its application in all-optical signal processing,” J. Lightwave Technol. 21, 1857-1868 (2003). [CrossRef]
  4. C. Qiao and M. Yoo, “Optical burst switching (OBS)--a new paradigm for an optical Internet,” J. High Speed Netw. 8, 69-84 (1999).
  5. D. J. Blumenthal, B.-E. Olsson, G. Rossi, T. E. Dimmick, L. Rau, M. Mašanović, O. Lavrova, R. Doshi, O. Jerphagnon, J. E. Bowers, V. Kaman, L. A. Coldren, and J. Barton, “All-optical label swapping networks and technologies,” J. Lightwave Technol. 18, 2058-2075 (2000). [CrossRef]
  6. H. J. Chao, M. Degermark, N. McKeown, and H. H.-Y. Tzeng, “Next-generation IP switches and routers,” IEEE J. Sel. Areas Commun. 17, 1009-1012 (1999).
  7. S. J. B. Yoo, F. Xue, Y. Bansal, J. Taylor, Z. Pan, J. Cao, M. Jean, T. Nady, G. Goncher, K. Boyer, K. Okamoto, S. Kamei, and V. Akella, “High-performance optical-label switching packet routers and smart edge routers for the next-generation Internet,” IEEE J. Sel. Areas Commun. 21, 1041-1051 (2003). [CrossRef]
  8. http://www.e-photon-one.org/ephotonplus.
  9. http://www.ict-bone.eu/.
  10. C. Raffaelli, K. Vlachos, N. Andriolli, D. Apostolopoulos, J. Buron, R. van Caenegem, G. Danilewicz, J. M. Finochietto, J. Garcia-Haro, D. Klanidis, M. O'Mahoney, G. Maier, A. Pattavina, P. Pavon-Marino, S. Ruepp, M. Savi, M. Scaffardi, I. Tomkos, A. Tzanakaki, L. Wosinska, O. Zouraraki, and F. Neri, “Photonics in switching: architectures, systems and enabling technologies,” Comput. Netw. 52, 1873-1890 (2008).
  11. Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y.-S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14, 801-807 (2008).
  12. S. A. Hamilton, B. S. Robinson, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb/s optical time-division multiplexed networks,” J. Lightwave Technol. 20, 2086-2100 (2002). [CrossRef]
  13. G. Maxwell, B. Manning, M. Nield, M. Hariow, C. Ford, M. Clements, S. Lucas, P. Townley, R. McDougall, S. Oliver, R. Cecil, L. Johnston, A. Poustie, R. Webb, I. Lealman, L. Rivers, J. King, S. Perrin, R. Moore, I. Reid, and D. Scrase, “Very low coupling loss, hybrid-integrated all-optical regenerator with passive assembly,” in 28th European Conference on Optical Communication (IEEE, 2002), paper PD3.5.
  14. M. Masanovic, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, “Monolithically integrated Mach-Zehnder interferometer wavelength converter and widely tunable laser in InP,” IEEE Photon. Technol. Lett. 15, 1117-1119 (2003). [CrossRef]
  15. J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconci, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gb/s SOA all-optical wavelength converter and assessment of its regenerative properties,” in Optical Amplifiers and Their Applications/Integrated Photonics Research, Technical Digest (CD) (Optical Society of America, 2004), paper OTuB2.
  16. http://www.ciphotonics.com.
  17. G. Maxwell, R. McDougall, R. Harmon, M. Nield, L. Rivers, A. Poustie, F. Gunning, M. Yang, A. D. Ellis, R. Webb, and R. Manning, “WDM-enabled, 40 Gb/s hybrid integrated all-optical regenerator,” in 31st European Conference on Optical Communication, Vol. 6 (IEEE, 2005) postdeadline paper, pp. 15-16.
  18. G. Rossi, O. Jerphagnon, B. Olsson, and D. J. Blumenthal, “Optical SCM data extraction using a fiber-loop mirror for WDM network systems,” IEEE Photon. Technol. Lett. 12, 897-899 (2000). [CrossRef]
  19. D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50-55 (1998). [CrossRef]
  20. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. Ing, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004). [CrossRef]
  21. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, “Distributed and localized feedback in microresonator sequences for linear and nonlinear optics,” J. Opt. Soc. Am. B 21, 1818-1832 (2004). [CrossRef]
  22. O. Schwelb and I. Frigyes, “All-optical tunable filters built with discontinuity-assisted ring resonators,” J. Lightwave Technol. 19, 4-386 (2001).
  23. S. Vargas, C. Vázquez, and J. M. S. Pena, “Wide tunable filters using a recirculating delay line with multi-reflections,” Opt. Eng. (Bellingham) 41, 926-927 (2002). [CrossRef]
  24. C. Vázquez, S. Vargas, J. M. S. Pena, and P. Corredera, “Tunable optical filters using compound ring resonators for DWDM,” IEEE Photon. Technol. Lett. 15, 1085-1087 (2003). [CrossRef]
  25. C. Vázquez, S. Vargas, and J. M. S. Pena, “Design and tolerance analysis of a router using an amplified ring resonator and Bragg gratings,” Appl. Opt. 39, 1934-1940 (2000).
  26. M. M. Lee and M. C. Wu, “A MEMS-actuated tunable microdisk resonator,” in IEEE/LEOS International Conference on Optical MEMS (IEEE, 2003), paper MC3.
  27. W. M. J. Green, R. K. Lee, A. Yariv, and M. A. Scherer, “Control of optical waveguide-resonator coupling: application to low-power optical modulation and switching,” in The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2003), paper MM3, pp. 130-131.
  28. K. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6, 1428-1435 (2000). [CrossRef]
  29. I. White, R. Penty, M. Webster, J. C. Yew, A. Wonfor, and S. Shahkooh, “Wavelength switching components for future photonic networks,” IEEE Commun. Mag. 40(9), 74-81 (2002). [CrossRef]
  30. A. D. Ellis, A. E. Kelly, D. Nesset, R. Kashyap, and D. G. Moody, “Error free 100 Gbit/s wavelength conversion using grating assisted cross gain modulation in 2 mm long semiconductor amplifier,” Electron. Lett. 34, 1958-1959 (1998). [CrossRef]
  31. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320 Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25, 103-108 (2007). [CrossRef]
  32. S. Nakamura, Y. Ueno, and K. Tajima, “168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch,” IEEE Photon. Technol. Lett. 13, 1091-1093 (2001). [CrossRef]
  33. B. Mikkelsen, T. Durhuus, C. Joergensen, R. J. S. Pederson, S. L. Danielsen, and K. E. Stubkjaer, “10 Gbit/s wavelength converter realised by monolithic integration of semiconductor optical amplifiers and Michelson inteferometer,” in Proceedings of ECOC'94 (IEEE, 1994), Vol. 4, pp. 67-70.
  34. T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen, and K. E. Stubkjaer, “All optical wavelength conversion by SOA's in a Mach-Zehnder configuration,” IEEE Photon. Technol. Lett. 6, 53-55 (1994). [CrossRef]
  35. J. Yu, X. Zheng, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppesen, “40 Gb/s all-optical wavelength conversion based on a nonlinear optical loop mirror,” J. Lightwave Technol. 18, 1001-1010 (2000). [CrossRef]
  36. B.-E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, “A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering,” IEEE Photon. Technol. Lett. 12, 846-848 (2002). [CrossRef]
  37. T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett. 34, 1013-1014 (1998). [CrossRef]
  38. S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3, 1131-1145 (1997). [CrossRef]
  39. D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1146-1157 (1997). [CrossRef]
  40. A. Hsu and S. L. Chuang, “Wavelength conversion by dual-pump four-wave mixing in an integrated laser modulator,” IEEE Photon. Technol. Lett. 15, 1120-1122 (2003). [CrossRef]
  41. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004). [CrossRef]
  42. W. Wang, L. G. Rau, and D. J. Blumenthal, “160 Gb/s variable length packet/10 Gb/s-label all-optical label switching with wavelength conversion and unicast/multicast operation,” J. Lightwave Technol. 23, 211-218 (2005). [CrossRef]
  43. M. Scaffardi, F. Fresi, A. Bogoni, and L. Potì, “Implementation of a tunable 160 Gb/s wavelength multi-converter based on supercontinuum in a highly nonlinear fibre,” in Proceedings of ECOC 2006 (IEEE, 2006), paper Th3.5.4.
  44. T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95, 1757-1766 (2007).
  45. M. Spyropoulou, S. Sygletos, and I. Tomkos, “Simulation of multiwavelength regeneration based on QD semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 19, 1577-1579 (2007).
  46. M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13, 1683-1691 (2002). [CrossRef]
  47. D. K. Hunter, M. C. Chia, and I. Andonovic, “Buffering in optical packet switches,” J. Lightwave Technol. 16, 2081-2094 (1998). [CrossRef]
  48. D. Apostolopoulos, D. Petrantonakis, O. Zouraraki, E. Kehayas, N. Pleros, and H. Avramopoulos, “All-optical label/payload separation at 40 Gb/s,” IEEE Photon. Technol. Lett. 18, 2023-2026 (2006). [CrossRef]
  49. D. Tsiokos, P. Bakopoulos, A. Poustie, G. Maxwell, and H. Avramopoulos, “Jitter reduction in a 40 Gb/s all-optical 3R regenerator using integrated MZI-SOA switches,” Electron. Lett. 42, 817-819 (2006). [CrossRef]
  50. R. S. Tucker, “The role of optics and electronics in high-capacity routers,” J. Lightwave Technol. 24, 4655-4673 (2006). [CrossRef]
  51. M. C. Chia, D. K. Hunter, I. Andonovic, P. Ball, I. Wright, S. P. Ferguson, K. M. Guild, and M. J. O'Mahoney, “Packet loss and delay performance of feedback and feed-forward arrayed-waveguide gratings-based optical packet switches with WDM inputs-outputs,” J. Lightwave Technol. 19, 1241-1254 (2001). [CrossRef]
  52. C. M. Gauger, “Dimensioning of FDL buffers for optical burst switching nodes,” in Proceedings of the 6th IFIP Working Conference on Optical Network Design and Modeling (ONDM 2002) (IFIP, 2002), pp. 117-132.
  53. E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for optical packet buffering,” IEEE Photon. Technol. Lett. 18, 103-105 (2006). [CrossRef]
  54. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046-4066 (2005). [CrossRef]
  55. H. Kawaguchi, “All-optical signal regeneration and optical buffering using polarization bistable VCSELs,” in International Conference on Transparent Optical Networks (IEEE, 2006), pp. 24-27.
  56. H.-D. Jung, I. T. Monroy, A. M. J. Koonen, and E. Tangdiongga, “All-optical data vortex node using an MZI-SOA switch array,” IEEE Photon. Technol. Lett. 19, 1777-1779 (2007).
  57. O. Zouraraki, K. Yiannopoulos, P. Zakynthinos, D. Petrantonakis, E. Varvarigos, A. Poustie, G. Maxwell, and H. Avramopoulos, “Optical packet buffering in all-optical time-slot-interchanger architecture,” IEEE Photon. Technol. Lett. 19, 1307-1309 (2007).
  58. K. Yiannopoulos, K. Vlachos, and E. Varvarigos, “Multiple-input buffer and shared buffer architectures for optical packet and burst switching networks,” J. Lightwave Technol. 25, 1379-1389 (2007).
  59. M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photon. Technol. Lett. 17, 968-970 (2005). [CrossRef]
  60. H. Kawaguchi, I. S. Hidayat, Y. Takahashi, and Y. Yamayoshi, “Pitchfork bifurcation polarisation bistability in vertical-cavity surface-emitting lasers,” Electron. Lett. 31, 109-111 (1995). [CrossRef]
  61. Y. Liu, M. T. Hill, N. Calabretta, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “Tree-state all-optical memory based on coupled ring lasers,” IEEE Photon. Technol. Lett. 15, 1461-1463 (2003). [CrossRef]
  62. A. Malacarne, A. Bogoni, and L. Potì, “An optical flip-flop based on erbium-ytterbium doped fibre,” in Proceedings of ECOC 2006 (IEEE, 2006), paper We3, p. 31.
  63. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263-2265 (2004). [CrossRef]
  64. J. E. Heebner and R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett. 24, 847-849 (1999).
  65. K. Djordjev, S. Choi, S. Chou, and P. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828-830 (2002). [CrossRef]
  66. K. Djordjev, S. Choi, S. Chou, and P. Dapkus, “Vertically coupled InP microdisk switches devices with electroabsorptive active regions,” IEEE Photon. Technol. Lett. 14, 1115-1117 (2002). [CrossRef]
  67. D. H. Geusebroek, E. J. Klein, H. Kelderman, F. S. Tan, D. J. W. Klunder, and A. Driessen, “Thermally tunable, wide FSR switch based on micro-ring resonators,” in Proceedings of the Symposium IEEE/LEOS Benelux Chapter (IEEE, 2002), pp. 155-158.
  68. U. L. K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88, 111107 (2006). [CrossRef]
  69. M. Beaugeois, B. Pinchemel, and M. Bouazaoui, M. Lesecq, S. Maricot, and J. P. Vilcot, “All-optical tunability of InGaAsP/InP microdisk resonator by infrared light irradiation,” Opt. Lett. 32, 35-37 (2007). [CrossRef]
  70. B. Maune, R. Lawson, C. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett. 83, 4689-4691 (2003). [CrossRef]
  71. K. Tada, T. Suhara, K. Kikuchi, Y. Kokubun, K. Utaka, M. Asada, F. Koyama, and T. Arakawa, Photonics Based on Wavelength Integration and Manipulation (The Institute of Pure and Applied Physics, 2005), pp. 303-316.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited