OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 23, Iss. 1 — Jan. 1, 1933
  • pp: 7–14

Sensibility to Color-Temperature Change as a Function of Temperature

DEANE B. JUDD  »View Author Affiliations


JOSA, Vol. 23, Issue 1, pp. 7-14 (1933)
http://dx.doi.org/10.1364/JOSA.23.000007


View Full Text Article

Acrobat PDF (933 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Determinations at the same brightness by six normal observers have been made of the color-temperature difference corresponding to a chromaticity difference just doubtfully perceptible over the range of 1800 to 11,0000°K. It has been found that this temperature, difference corresponds closely to a constant difference in the spectral centroid of light (Priest’s empirical relation); it is also closely proportional to the square of the color temperature (Davis’ representation of Priest’s empirical relation); furthermore it corresponds with good approximation to a constant difference in the “red” trilinear coordinate (Judd’s empirical relation). These experimental results have therefore approximately checked three empirical relations previously derived from less complete data. Priest’s spectral-centroid relation and Davis’ representation of it both agree so closely with the experimental data that the discrepancies are not known to be real, but Judd’s empirical relation yields discrepancies about twice as large as the experimental uncertainty. The verification of Priest’s spectral-centroid relation confirms the tentative conclusion by Davis and Gibson that between 2000 and 3000°K a given color-temperature difference causes for the normal observer nearly the same size chromaticity difference regardless of whether the radiators be viewed directly or through a blue filter not more highly selective than a “daylight filter.” This result has a bearing on the phenomenon of “color constancy”; that is, it helps to explain why the colors of objects are approximately constant for illuminants differing as widely as incandescent-lamplight and natural daylight.

Citation
DEANE B. JUDD, "Sensibility to Color-Temperature Change as a Function of Temperature," J. Opt. Soc. Am. 23, 7-14 (1933)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-23-1-7


Sort:  Author  |  Journal  |  Reset

References

  1. I. G. Priest, The Colorimetry and Photometry of Daylight and Incandescent Illuminants by the Method of Rotatory Dispersion, J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1190–1191 (1923).
  2. R. Davis, A Correlated Color Temperature for Illuminants, Bureau Standards J. Research 7, 659–681 (1931). This simpler statement of the spectral-centroid relation might have been deduced by combining two previous findings, one by Gibson (see footnote 10, p. 12) concerning a spectral-centroid relation between incident and transmitted light for daylight filters, the other by Langmuir and Orange (Trans. A.I.E.E., 32, 1944–1946 (1913)) concerning a similar relation involving reciprocal temperature. The mathematical analysis on which this latter finding is based was given later by Foote, Mohler and Fairchild, J. Wash. Acad. Sci. 7, 545–549 (1917), and Gage, Trans. I.E.S. 16, 428–429 (1921) also called attention to this relation.
  3. D. B. Judd, Chromaticity Sensibility to Stimulus Differences, J. Opt. Soc. Am. 22, 72–108 (1932).
  4. D. B. Judd, Precision of Color Temperature Measurements under Various Observing Conditions; A New Color Comparator for Incandescent Lamps, Bureau Standards J. Research 5, 1161–1177 (1930). (In Fig. 2, p. 1169 of this paper, a decimal point should be placed before each of the numbers on the ordinate scale.)
  5. F. F. Martens, Über ein neues Polarisationsphotometer, Phys. Zeits. 1, 299–303 (1900).
  6. R. Davis and K. S. Gibson, Filters for the Reproduction of Sunlight and Daylight and the Determination of Color Temperature, Misc. Pub., Bur. Stds., No. 114, 68–69; January 21 (1931).
  7. Later analysis showed that order of presentation of stimuli did not affect sensibility importantly.
  8. Analysis shows that variation from day to day accounts for a large part of this scatter.
  9. E for "Empfindung," a fairly common usage among European writers; see also footnote 3, p. 8, for reference to a paper in which this symbol is used extensively.
  10. K. S. Gibson, Spectral Centroid Relations for Artificial Daylight Filters, J. Opt. Soc. Am. and Rev. Sci. Inst., 11, 473–478 (1925).
  11. R. Davis and K. S. Gibson, Filters for the Reproduction of Sunlight and Daylight and the Determination of Color Temperature, Misc. Pub. Bur. Stds., No. 114, 79, January, (1931).
  12. See footnote 6, p. 8. This paper gives data for finding dθ/dθ,.
  13. E. Hering, Grundzüge der Lehre vom Lichtsinn, aus Graefe-Sämisch Handb. d. ges. Augenheilk., XII, 1905 and 1907. H. v. Helmholtz, Handb. d. Physiol. Optik, 3d Ed., 2, 233, 243 (1911). D. Katz, Die Erscheinungsweisen der Farben und ihre Beeinflussung durch die individuelle Erfahrung, Ergänzungsband VII, Zeits. f. Psychol., 1911. E. R. Jaensch, Über Farbenkontrast und die sog. Berücksichtigung farbigen Beleuchtung, Zeits. f. Sinnesphysiol. 52, 165–180 (1921). O. Kroh, Über Farbenkonstanz und Farbentransformation, Zeits. f. Sinnesphysiol. 52, 181–216, 235–273 (1921). A. Gelb, Die "Farbenkonstanz" der Sehdinge, in Handb. d. normalen u. pathologischen Physiol. 12, 1st half, Receptionsorgane II, 594–678; Berlin, Springer; 1929.
  14. A. Kohlrausch, Tagessehen, Dämmersehen, Adaptation, I. Allgemeines über Umstimmung und "Farbenkonstanz der Sehdinge," in Handb. d. normalen u. pathologischen Physiol. 12, 2d half, Receptionsorgane II, 1499–1506; Berlin, Springer (1931).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited