OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 57, Iss. 4 — Apr. 1, 1967
  • pp: 493–502

Film-Grain Noise in Wavefront-Reconstruction Imaging

J. W. GOODMAN  »View Author Affiliations

JOSA, Vol. 57, Issue 4, pp. 493-502 (1967)

View Full Text Article

Acrobat PDF (1114 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A fundamental limitation to the quality of wavefront reconstruction images is noise generated by the granular structure of the recording medium. Predictions of the signal-to-noise ratios that can be achieved in wavefront-reconstruction imaging are based on the checkerboard and overlapping circular-grain models of the recording medium. When the object consists of a multitude of resolvable point sources, the signal-tonoise ratio is found to be proportional to the space-bandwidth product of the recording medium; when the object is a diffuse surface, the signal-to-noise ratio is found to be independent of that space-bandwidth product. The quantum limit to signal-to-noise ratio is approachable only with a judicious choice of reference exposure and a recording medium free of other classical noise sources.

J. W. GOODMAN, "Film-Grain Noise in Wavefront-Reconstruction Imaging," J. Opt. Soc. Am. 57, 493-502 (1967)

Sort:  Author  |  Journal  |  Reset


  1. D. Gabor, Nature 161, 777 (1948).
  2. D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1949).
  3. D. Gabor, Proc. Phys. Soc. B64, 449 (1951).
  4. E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).
  5. E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 53, 1377 (1963).
  6. E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 54, 1295 (1964).
  7. E. N. Leith, J. Upatnieks, and K. A. Haines, J. Opt. Soc. Am. 55, 981 (1965).
  8. R. W. Meier, J. Opt. Soc. Am. 55, 987 (1965).
  9. J. Armstrong, IBM J. Res. Dev. 9, 171 (1965).
  10. D. Gabor, in Progress in Optics, E. Wolf, Ed. (North-Holland Publishing Co., Amsterdam, 1961), Vol. I, pp. 122–124.
  11. A. Kozma, J. Opt. Soc. Am. 56, 428 (1966).
  12. R. F. van Ligten, J. Opt. Soc. Am. 56, 1 (1966).
  13. C. W. Helstrom, J. Opt. Soc. Am. 56, 433 (1966).
  14. E. L. O'Neill, Introduction to Statistical Optics (Addison-Wesley Publishing Co., Reading, Mass., 1963).
  15. L. Silberstein, Phil. Mag. 44, 257 (1922).
  16. L. Silberstein, J. Opt. Soc. Am. 31, 343 (1941).
  17. G. W. Stroke, An Introduction to Coherent Optics and Holography (Academic Press Inc., New York, 1966).
  18. While a planar object is assumed here, the results can readily be extended to three-dimensional objects.
  19. The linearity of the process is proved by applying two pointsource objects and noting that they generate two real (and two virtual) images, and that the relative amplitudes of the images are the same as the relative amplitudes of the objects.
  20. That the imaging process is space invariant when the film records all incident spatial structure is implied by the results of R. F. van Ligten, J. Opt. Soc. Am. 56, 1009 (1966).
  21. Note that while Es(x,y) refers to the exposure due to the entire object, Eσ refers to the constant exposure contributed by a single resolution cell on the object. Eσ is, of course, different for different resolution cells; or equivalently, Eσ depends on the image coordinates (α0β0).
  22. This result follows directly from the Fresnel-Kirchhoff diffraction formula, as found, for example, in M. Born and E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964), 2d ed., p. 340.
  23. Ref. 14, Sec. 7–3.
  24. Ref. 14, Sec. 7–4.
  25. An analogous result is known in the theory of optical heterodyne detection. If a strong local oscillator drives a detector well above its sensitivity threshold, the signal-to-noise ratio is limited solely by the quantum efficiency of the detector and the number of signal photons incident per resolution period.
  26. This restriction is a necessary (but in general not sufficient) condition if the incident spatial structure is to be fully recorded.
  27. D. Middleton, Introduction to Statistical Communication Theory (McGraw-Hill Book Company, New York, 1960), p. 356.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited