OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 57, Iss. 5 — May. 1, 1967
  • pp: 630–638

Hamilton’s Mixed and Angle Characteristic Functions and Diffraction Aberration Theory

ARTHUR B. SHAFER  »View Author Affiliations


JOSA, Vol. 57, Issue 5, pp. 630-638 (1967)
http://dx.doi.org/10.1364/JOSA.57.000630


View Full Text Article

Acrobat PDF (1113 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of Hamilton’s mixed and angle characteristic functions in wave and diffraction aberration calculations is theoretically examined. The relation of Hamilton's mixed and angle characteristic functions to a new wave-aberration function is shown. This aberration function is to be used in the Luneburg-Debye diffraction integrals. The mixed and angle characteristic functions as utilized in diffraction theory via the Luneburg-Debye integrals are examined. The mathematical and physical approximations are discussed. The use of the Luneburg-Debye diffraction integrals for image evaluation is examined and some difficulties are pointed out. It is concluded that the above methods should not be used for microwave and radio-frequency imaging systems; they are of limited validity for optical imaging systems.

Citation
ARTHUR B. SHAFER, "Hamilton’s Mixed and Angle Characteristic Functions and Diffraction Aberration Theory," J. Opt. Soc. Am. 57, 630-638 (1967)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-57-5-630


Sort:  Author  |  Journal  |  Reset

References

  1. W. Hamilton, Mathemotical Papers, A. Conway and J. Synge, Eds. (Cambridge University Press, London, 1931), Vol. 1.
  2. R. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, Calif., 1964).
  3. M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, N. Y., 1959).
  4. J. Synge, Geometrical Optics (Cambridge University Press, London, 1937).
  5. J. Synge, J. Opt. Soc. Am. 27, 75, 138 (1937).
  6. M. Herzberger, J. Opt. Soc. Am. 27, 133 (1937).
  7. A. Sommerfeld and J. Runge, Ann. Phys. (Leipzig) 35, 277 (1911).
  8. N. Arley, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 22, No. 8, 1 (1945).
  9. M. Kline, in Proceedings of a Symposiuml on Electromagnetic Waves, R. Langer, Ed. (University of Wisconsin Press, Madison, Wis., 1962), p. 3.
  10. M. Kline and I. Kay, Electromagnetic Theory and Geometrical Optics (Interscience Publishers, Inc. and John Wiley & Sons, Inc., New York, 1965).
  11. F. Zernike, Pieter Zeeman (Martinus Nijhoff, Hague, The Netherlands, 1935), p. 323.
  12. H. Beutler, J. Opt. Soc. Am. 35, 311 (1945).
  13. Lord Rayleigh, Collected Scientific Papers (Cambridge University Press, London, 1912), Vol. 5, (1902–1910), p. 456.
  14. M. Herzberger, J. Opt. Soc. Am. 53, 661 (1963).
  15. M. Herzberger and D. Wilder, J. Opt. Soc. Soc. Am. 54, 773 (1964).
  16. M. Born, Optik (Springer-Verlag, Berlin, 1933).
  17. P. Debye, Ann. Physik 30, 775 (1909).
  18. J. Picht, Ann. Physik 77, 685 (1925).
  19. J. Focke, Opt. Acta 3, 110 (1956).
  20. E. Wolf, Proc. Roy. Soc. (London) 253A, 349 (1959).
  21. (a) B. Richards, in Astrontomtcal Optics and Related Subjects, Ed. Z. Kopal (North-Holland Publishing Co., Amsterdam 1956); (b) B. Richards and E. Wolf, Proc. Roy. Soc. (London) 253A, 285 (1959); (c) H. Osterberg and J. Wilkins, J. Opt. Soc. Am. 39, 553 (1949); (d) H. Osterberg, in Phase Microscopy by A. H. Bennett et al. (John Wiley & Sons, New York, N. Y., 1951); (e) H. Osterberg and R. McDonald, in Optical Imzage Evaluation (Natl. Bur. Std. Circ. 526, 1954).
  22. F. Kottler, Ann. Physik 71, 457 (1923).
  23. (a) J. Stratton and L. Chu, Phys. Rev. 56, 99 (1939); (b) J. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, New York, N. Y., 1941).
  24. H. Severin, Z. Physik 129, 426 (1951) and Nuovo Cimento Ser. 9, Suppl. Al. 9, 381 (1952).
  25. J. Vasseur, Ann. Phys. (Paris) 1, 506 (1952).
  26. C. Bouwkamp, Rept. Prog. Phys. 17, 35 (1954).
  27. (a) A. Sommerfeld, Lectures in Theoretical Physics (Academic Press Inc., New York, 1954), Vol. IV; (b) D. Jones, Proc. Camb. Phil. Soc. 48, 733 (1952).
  28. H. Weyl, Ann. Phys. (Leipzig) 60, 481 (1919).
  29. For no aberration or phase retardation due to apodization, etc., Φ = 0. It does not follow that W = 0 or is a constant, as is often assumed. The function W is not an aberration function but a characteristic function. As previously defined W = V - (αX1 + βY1 + γZ1,) where X1, Y1, Z1 define a point such as P1, Fig. 2. For perfect imaging where the origin of coordinates is not the perfect image point P0, it can be seen that X1, Y1, Z1, and V are constants (Fermat’s principle); but the ray components α, β and γ are variables and will be different for each ray; i.e., ∂W/∂α = -X1, etc. The exponent of the integrand of Eqs. (8) and (9) can be written as W (Q1′) + αX0 + βY0 + γZ0 + α(X1′ - X0) + β(Y1′ - Y0) + γ(Z1′ - Z0). What is constant in the above equation for perfect imaging is the sum of the first four terms. They can be identified as V(P0). Hence, in Eqs. (8) and (9), when there is perfect imaging, the last three terms of the preceding equation above must remain. If the perfect imaging is on axis and only the image plane Z0 = O is considered, then W(Q1′) can be suppressed since X0 = Y0 = Z0 = 0.
  30. P. Clemmowv, Proc. Roy. Soc. (London) 205A, 286 (1951)
  31. R. Barakat, J. Opt. Soc. Am. 52, 985 (1962).
  32. R. Barakat and A. Houston, J. Opt. Soc. Am. 55, 1142 (1965).
  33. W. Brouwer, E. O'Neill, and A. Walther, Appl. Opt. 2, 1239 (1963).
  34. W. Charman, J. Opt. Soc. Am. 53, 410, 415 (1963).
  35. B. Watrasiewicz, Optica Acta 12, 167 (1965).
  36. H. Osterberg and G. Pride, J. Opt. Soc. Am. 40, 14 (1950); H. Osterberg and L. Smith, J. Opt. Soc. Am. 50, 362 (1960); L. Smith, ibid., p. 369; W. Welford, Optics in Metrology (Pergamon Press, London, 1960).
  37. J. Focke, Opt. Acta 4, 124 (1957).
  38. R. Luneburg, Lecture Notes (New York University, 1947, 1948).
  39. G. Lansraux, Can. J. Phys. 40, 1101 (1962).
  40. R. Tremblay and A. Boivin, Appl. Opt. 5, 251 (1966).
  41. M. Bachynski and G. Bekefi, J. Opt. Soc. Am. 47, 428 (1957).
  42. (a) G. Farnell, J. Opt. Soc. Am. 48, 643 (1958); (b) Can. J. Phys. 35, 777 (1957); (c) Can. J. Phys. 36, 935 (1958).
  43. The Rayleigh equation evaluated is from H. Osterberg and L. Smith, J. Opt. Soc. Am. 51, 1050 (1961); the Maggi-Rubinowvicz-Kirchhoff equation is from Ref. 42 (a).
  44. A. Schell, IEEE Trans. Antennas Propagation AP-11, 428 (1963).
  45. M. Gravel and A. Boivin, J. Opt. Soc. Am. 56, 1438A (1966) and private communication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited