OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 59, Iss. 12 — Dec. 1, 1969
  • pp: 1665–1670

Diffusion Model of Linear Flicker Responses

D. H. KELLY  »View Author Affiliations


JOSA, Vol. 59, Issue 12, pp. 1665-1670 (1969)
http://dx.doi.org/10.1364/JOSA.59.001665


View Full Text Article

Acrobat PDF (665 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent cascaded-integrator models do not fit the sine-wave flicker thresholds as well as we might wish, but neither does the Ferry-Porter law. In fact, the Ferry-Porter function is not physically realizable as a linear model. By modifying it to yield realizable responses like those of the cascaded integrator, we obtain a much simpler model, which appears to be a special case of the photochemical diffusion mechanism proposed by Ives and more recently by Veringa. This model is a good fit, not only to the flicker data, but also to human phase-shift measurements obtained by the phosphene method. We infer that receptor-cell properties probably control the high-frequency linear filtering of flicker waveforms.

Citation
D. H. KELLY, "Diffusion Model of Linear Flicker Responses," J. Opt. Soc. Am. 59, 1665-1670 (1969)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-59-12-1665


Sort:  Author  |  Journal  |  Reset

References

  1. Of course, this also depends on the type of nonlinearity postulated. For a discussion of the required precision in the case of a logarithmic nonlinearity, see L. H. van der Tweel, Ann. N. Y. Acad. Sci. 89, 829 (1961).
  2. H. E. Ives, J. Opt. Soc. Am. and Rev. Sci. Instr. 6, 254 (1922).
  3. H. deLange, Physica 18, 935 (1952).
  4. D. H. Kelly, J. Opt. Soc. Am. 51, 422 (1961).
  5. D. H. Kelly, Doc. Ophthalmol. 18, 16 (1964).
  6. J. Levinson and L. D. Harmon, Kybernetik 1, 107 (1961).
  7. H. deLange, J. Opt. Soc. Am. 48, 777 (1958).
  8. D. H. Kelly, J. Opt. Soc. Am. 51, 917 (1961).
  9. H. deLange, J. Opt. Soc. Am. 44, 380 (1954).
  10. J. Levinson, Science 130, 919 (1959).
  11. K. Gibbins and C. I. Howarth, Nature 190, 330 (1961).
  12. H. E. Ives, J. Opt. Soc. Am. and Rev. Sci. Instr. 6, 343 (1922).
  13. D. H. Kelly, J. Opt. Soc. Am. 51, 747 (1961).
  14. M. G. F. Fuortes and A. L. Hodgkin, J. Physiol. (London) 172, 239 (1964).
  15. R. B. Pinter, J. Gen. Physiol. 49, 565 (1966).
  16. A. Troelstra, Non-linear Systems Analysis in Electro-retinograpity (Institute for Perception RVO-TNO, Soesterberg, 1964).
  17. R. B. Marimont, J. Physiol. (London) 179, 489 (1965).
  18. R. D. deVoe, in The Functional Organization of the Compound Eye (Pergamon Press, Ltd., Oxford, 1966), p. 309.
  19. R. D. deVoe, J. Gen. Physiol. 50, 1993 (1967).
  20. J. Levinson, J. Opt. Soc. Am. 56, 95 (1966).
  21. L. Matin, J. Opt. Soc. Am. 58, 404 (1968).
  22. G. Sperling and M. M. Sondhi, J. Opt. Soc. Am. 58, 1133 (1968).
  23. F. Veringa, thesis, Amsterdam (1961).
  24. F. Veringa, Kon. Ned. Akad. Wetensch. Proc. Ser. B 64, 413 (1961).
  25. This function was suggested by one of the referees.
  26. See, e.g., S. J. Mason and H. J. Zimmerman, Electronic Circuits, Signals and Systems (John Wiley & Sons, Inc., New York, 1960), Sec. 7.14.
  27. This integral can be solved by contour integration in the complex plane, or the solution can be found in standard integral tables.
  28. G. S. Brindley, J. Physiol. (London) 164, 157 (1962).
  29. F. Veringa, Nature 197, 998 (1963).
  30. F. Veringa, Doc. Ophthalmol. 18, 72 (1964).
  31. F. Veringa and J. Roelofs, Nature 211, 321 (1966).
  32. See Fig. 2 of Ref. 23.
  33. D. H. Kelly, J. Opt. Soc. Am. 59, 1361 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited