Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Limitations of fringe-parameter estimation at low light levels

Not Accessible

Your library or personal account may give you access

Abstract

Fundamental limitations of estimating the amplitudes and phases of interference fringes at low light levels are determined by the finite number of photoevents registered in the measurement. By modeling the receiver as a spatial array of photon-counting detectors, results are obtained that permit specification of the minimum number of photoevents required for estimation of fringe parameters to a given accuracy. Both a discrete Fourier-transform estimator and an optimum joint maximum-likelihood estimator are considered. In addition, the Cramér–Rao statistical error bounds are derived, specifying the limiting performance of all unbiased estimators in terms of the collected light flux. The performance of the spatial sampling receiver is compared with that of an alternate technique for fringe-parameter estimation that uses a barred grid and temporal sampling of a moving fringe.

© 1973 Optical Society of America

Full Article  |  PDF Article
More Like This
Fundamental limits in estimating light pattern position

Jerry Nowakowski and Marek Elbaum
J. Opt. Soc. Am. 73(12) 1744-1758 (1983)

Estimation of Object Parameters by a Quantum-Limited Optical System

CARL W. HELSTROM
J. Opt. Soc. Am. 60(2) 233-239 (1970)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.