OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 63, Iss. 7 — Jul. 1, 1973
  • pp: 826–831

Statistics of photoelectron counting with a rectangular spectral profile

M. L. Mehta and C. L. Mehta  »View Author Affiliations

JOSA, Vol. 63, Issue 7, pp. 826-831 (1973)

View Full Text Article

Acrobat PDF (411 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spheroidal functions appearing in many other contexts are used here to analyze the photoelectron-counting statistics of a polarized thermal light beam of rectangular spectral profile.

M. L. Mehta and C. L. Mehta, "Statistics of photoelectron counting with a rectangular spectral profile," J. Opt. Soc. Am. 63, 826-831 (1973)

Sort:  Author  |  Journal  |  Reset


  1. R. Hanbury Brown and R. Q. Twiss, Proc. R. Soc. A 242, 300 (1957); Proc. R. Soc. A 243, 29 (1957); J. A. Armstrong and A. W. Smith, in Progress in Optics, VI, edited by E. Wolf (North—Holland, Amsterdam, 1967), p. 211; J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics (Benjamin, New York, 1968), Ch. 2; C. L. Mehta, in Progress in Optics, VIII, edited by E. Wolf (North—Holland, Amsterdam, 1971), p. 374.
  2. L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
  3. G. Bédard, Phys. Rev. 151, 1038 (1966); G. Bédard, J. C. Chang, and L. Mandel, Phys. Rev. 160, 1496 (1967); E. Jakeman and E. R. Pike, J. Phys. A 1, 128 (1968); A. K. Jaiswal and C. L. Mehta, Phys. Rev. 186, 1355 (1969).
  4. Note that as far as the counting statistics are concerned, only the shape of the spectrum g (ν) is important and not its relative position. We therefore take the center of the spectrum to be situated at the origin.
  5. S. O. Rice, Bell Syst. Tech. J. 23, 282 (1944); Bell Syst. Tech. J. 24, 46 (1945).
  6. See, for example, P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw—Hill, New York, 1953), Vol. 1, § 4.8. We are thankful to J. des Cloizeaux for indicating this method.
  7. L. Robin, Fonctions Sphériques de Legendre et Fonctions Sphéroīdales (Gauthier—Villars, Paris, 1959), Tome III, p. 250, formule (255).
  8. D. Slepian, J. Math. Phys. 44, 99 (1965); see this article for other references; M. Gaudin, Nucl. Phys. 25, 447 (1961); J. des Cloizeaux and M. L. Mehta, J. Math. Phys. 13, 1745 (1972).
  9. J. Meixner and F. W. Schafke, Mathieusche Funktionen und Spheroidfunktionen (Springer, Berlin, 1954); C. Flammer, Spheroidal Wave Functions (Stanford U.P., Stanford, Calif., 1957).
  10. J. A. Stratton, P. M. Morse, L. J. Chu, J. D. C. Little, and P. J. Corbatto, Spheroidal Wave Functions (MIT Press, Cambridge, Mass., 1956); B. J. King and A. L. Van Buren, A Fortran Computer Program for Calculating the Prolate and Oblate Spheroidal Functions of the First Kind and Their First and Second Derivatives, NRL Report No. 7161 (U.S. Government Printing Office, Washington, D.C., 1970).
  11. D. Slepian and E. Sonnenblick, Bell Syst. Tech. J. 44, 1745 (1965); M. L. Mehta and J. des Cloizeaux, Indian J. Pure Appl. Math 3, 329 (1972).
  12. C. L. Mehta, Ref. 1, Appendix B.
  13. We are thankful to J. Raynal for help on this point.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited