OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 64, Iss. 11 — Nov. 1, 1974
  • pp: 1433–1444

Statistical properties of synchrotron radiation

C. Bénard and M. Rousseau  »View Author Affiliations


JOSA, Vol. 64, Issue 11, pp. 1433-1444 (1974)
http://dx.doi.org/10.1364/JOSA.64.001433


View Full Text Article

Acrobat PDF (1143 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Synchrotron radiation has been used as a source for spectroscopic experiments in many countries. In this paper, the statistical properties of a light pulse emitted by an electron pulse in a storage ring or a synchrotron are studied in a classical formalism. The field is shown to be gaussian for every wavelength. The coherence time of the filtered synchrotron radiation is calculated.

Citation
C. Bénard and M. Rousseau, "Statistical properties of synchrotron radiation," J. Opt. Soc. Am. 64, 1433-1444 (1974)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-64-11-1433


Sort:  Author  |  Journal  |  Reset

References

  1. R. P. Godwin, Springer Tracts Mod. Phys. 51, 1 (1969); K. Codling, Rep. Prog. Phys. 36, 541 (1973).
  2. Proceedings of the International Symposium on Synchrotron Radiation Uses, edited by I. Munro and G. Marr (Publ. Daresbury Nuclear Phys. Lab., Daresbury, 1973), Rapport 26.
  3. R. J. Glauber, in Quantum Optics and Electronics edited by C. de Witt, A. Blandin, and C. Cohen-Tannoudji (Gordon and Breach, New York, 1965); L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
  4. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964), Ch. X. See also the first of Ref. 3, p. 69.
  5. For simplification, this function is assumed to be scalar and not vectorial. This can be understood by supposing that one polarization only is considered.
  6. By chaotic field, we mean a stationary gaussian field. See, for instance, B. Picinbono and M. Rousseau, Phys. Rev. A 1, 635 (1970).
  7. A. A. Sokolov and I. M. Ternov, Synchrotron Radiation (Pergamon, New York, 1968), and references therein.
  8. J. Schwinger, Phys. Rev. 75, 1912 (1949); Phys. Rev. D 7, 1696 (1973).
  9. R. J. Glauber, Phys. Rev. 84, 395 (1951).
  10. M. Sands, Phys. Rev. 97, 470 (1956).
  11. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).
  12. H. Bruck, A ccéleérateurs circulaires de particules (Presses Universitaires de France, Paris, 1966).
  13. A. A. Kolomenskii and A. N. Lebedev, Zh. Tekh, Fiz. 32, 1237 (1962) [Sov. Phys.-Tech. Phys. 7, 913 (1963)].
  14. L. V. logansen and M. S. Rabinovitch, Zh. Eksp. Teor. Fiz. 35, 1013 (1958); 37, 118 (1959) [Sov. Phys.–JETP 35, 708 (1958); 37, 83 (1960)]. I. L. Zel'Manov, A. S. Kompaneets, and Yu S. Sayasov, Dokl. Akad. Nauk. SSSR 143, 72 (1962) [Sov. Phys.-Doklady 7, 201 (1962)].
  15. P. Goldreich and D. A. Keeley, Astrophys. J. 170, 463 (1971).
  16. M. S. Livingstone and J. P. Blewett, Particle Accelerators (McGraw-Hill, New York, 1962).
  17. See Eqs. (14–62) and (14–68) of Ref. 13, Sec. 14.5, [equation] The complex amplitude of the field for the given frequency ω can be written as a time Fourier transform of a function [equation] where Ri(t) is the distance from 0 of the ith electron at the same time t, for every i.
  18. Synchronous electron located in the middle of the bunch.
  19. The authors are grateful to Dr. H. Zyngier for having pointed this out.
  20. The authors are grateful to Dr. H. Zyngier for having pointed this out.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited