OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 64, Iss. 11 — Nov. 1, 1974
  • pp: 1470–1473

Optical anomalous dispersion of helium

Kwong T. Chung  »View Author Affiliations

JOSA, Vol. 64, Issue 11, pp. 1470-1473 (1974)

View Full Text Article

Acrobat PDF (340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



On the basis of a semiclassical approach, the dynamic polarizability and the index of refraction of helium near 1 1S-2 1P resonance are calculated. The steady-state solution of the Schrödinger equation used is well behaved at resonance; hence the decay width, in the Weisskopf and Wigner theory, need not be introduced. The result agrees, in essence, with the results of the Weisskopf and Wigner theory if the irradiance is weak. For great irradiance, the results differ significantly over a broad range of frequencies.

Kwong T. Chung, "Optical anomalous dispersion of helium," J. Opt. Soc. Am. 64, 1470-1473 (1974)

Sort:  Author  |  Journal  |  Reset


  1. D. S. Rozhdestvenskii, Tr. Gos. Opt. Inst. 2, (13) (1922).
  2. V. K. Prokofev, Tr. Gos. Opt. Inst. 3, (25) 1 (1924).
  3. V. F. Weisskopf and E. P. Wigner, Z. Phys. 63, 54 (1930).
  4. S. A. Korff and G. Breit, Rev. Mod. Phys. 4, 471 (1932).
  5. I. I. Rabi, Phys. Rev. 51, 652 (1937).
  6. N. F. Ramsey, Molecular Beams (Oxford U. P., London, 1956).
  7. C. Cohen-Tannoudji and S. Haroche, J. Phys. (Paris) 30, 125 (1969); J. Phys. (Paris) 30, 153 (1969).
  8. J. H. Shirley, Phys. Rev. 138, B979 (1965).
  9. D. T. Pegg, Phys. Rev. A 8, 2214 (1973).
  10. K. T. Chung, Phys. Rev. 166, 1 (1967).
  11. G. Lochak and M. Thiounn, C. R. Acad. Sci. B 264, 1533 (1967).
  12. S. Pancharatnam, Proc. R. Soc. Lond. A 330, 281 (1972).
  13. This steady-state result can be obtained by using the timedependent phase-factor perturbation method [see K. T. Chung, Phys. Rev. 163, 1343 (1967)] and by summing the divergent term in the perturbation series to infinite orders. The validity of this solution can be proved by a direct substitution into the Schrödinger equation.
  14. A. Sommerfeld, Electrodynamics (Academic, New York, 1954), p. 75.
  15. B. Schiff and C. L. Pekeris, Phys. Rev. 134, A638 (1964).
  16. C. L. Pekeris, B. Schiff, and H. Lifson, Phys. Rev. 126, 1057 (1962).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited