OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 70, Iss. 8 — Aug. 1, 1980
  • pp: 976–985

Generalized ray tracing, caustic surfaces, generalized bending, and the construction of a novel merit function for optical design

Rong-Seng Chang and Orestes N. Stavroudis  »View Author Affiliations


JOSA, Vol. 70, Issue 8, pp. 976-985 (1980)
http://dx.doi.org/10.1364/JOSA.70.000976


View Full Text Article

Acrobat PDF (859 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Generalized ray tracing is an algorithm for calculating the geometrical parameters of a wave front in the neighborhood of a traced ray. These calculations are applied, surface by surface, for each traced ray, to an optical system being designed. These calculations determine the two points of contact of each traced ray with the two sheets of a caustic surface. The caustic surfaces are, in fact, aberrated three-dimensional images of object points and therefore contain all information on the geometrical aberrations of the subject lens. Generalized bending is a procedure in which the curvature of a pair of adjacent spherical refracting surfaces, their separation, and the distance to the next succeeding or next preceding surface may be changed so that any paraxial ray is left invariant except at the two affected surfaces. In this study we show that the displacement of a caustic point caused by a generalized bending is in essentially a straight line, that the direction of the displacement is determined by which refracting surfaces are selected, and that the magnitude of the displacement is proportional to the logarithm of the bending parameter. This suggests that caustic surfaces can be used as a merit function in the optical design process, that the merit functions can be calculated by means of generalized ray tracing, and that generalized bending provides an effective means of optimizing the design when included in a feedback loop.

© 1980 Optical Society of America

Citation
Rong-Seng Chang and Orestes N. Stavroudis, "Generalized ray tracing, caustic surfaces, generalized bending, and the construction of a novel merit function for optical design," J. Opt. Soc. Am. 70, 976-985 (1980)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-70-8-976

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited