Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Determination of optical constants from extinction measurements

Not Accessible

Your library or personal account may give you access

Abstract

Traditional methods of determining the optical constants of particulate materials by means of transmission, absorption, and reflectance measurements are known to be inherently inaccurate. The use of the Lorenz–Mie formalism to derive the optical constants from extinction data overcomes the problems associated with the traditional methods; but, as currently practiced, this method has severe limitations. In this paper we report an entirely new approach to determining the optical constants of aerosols from extinction data. This is an iterative method that uses the Lorenz–Mie formalism in conjunction with the Kramers–Kronig dispersion relations in order to derive the optical constants of the aerosol material. The theory of the method is developed in detail and is applied successfully to find the optical constants of an o-phosphoric-acid aerosol in the 7–14-μm infrared. The numerical procedure is shown to introduce an error of less than 1% in the determination of the o-phosphoric-acid optical constants. Limits on n, k and the particle size distribution for which the method is valid are indicated.

© 1981 Optical Society of America

Full Article  |  PDF Article
More Like This
Infrared optical constants of black powders determined from reflection measurements

V. P. Tomaselli, R. Rivera, D. C. Edewaard, and K. D. Möller
Appl. Opt. 20(22) 3961-3967 (1981)

Infrared optical properties of phosphorus-derived smoke

M. E. Milham, D. H. Anderson, and R. H. Frickel
Appl. Opt. 21(14) 2501-2507 (1982)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.