OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 39, Iss. 2 — Feb. 1, 1949
  • pp: 136–157

Analysis of Elliptical Polarization

M. RICHARTZ and HSIEN-YÜ HSÜ  »View Author Affiliations


JOSA, Vol. 39, Issue 2, pp. 136-157 (1949)
http://dx.doi.org/10.1364/JOSA.39.000136


View Full Text Article

Acrobat PDF (1999 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In order to analyze an elliptical light wave, we must find its state of polarization which is completely determined by three parameters, i.e., the direction (azimuth), the form (ellipticity), and the sense of the ellipse described by the light vector. In this paper a survey is given of the direct and indirect methods used for the measurement of the magnitudes of the three parameters. First, a mathematical treatment, which uses the calculus of quaternions, of the state of polarization for special cases will give the background to the theories of the methods discussed.

Citation
M. RICHARTZ and HSIEN-YÜ HSÜ, "Analysis of Elliptical Polarization," J. Opt. Soc. Am. 39, 136-157 (1949)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-39-2-136


Sort:  Author  |  Journal  |  Reset

References

  1. H. G. Jerrard, J. Opt. Soc. Am. 38, 35 (1948).
  2. R. Clark Jones, J. Opt. Soc. Am. 31, 488 (1941).
  3. See reference 2, p. 490.
  4. H. Y. Hsü, M. Richartz, and Y. K. Liang, J. Opt. Soc. Am. 37, 99 (1947).
  5. H. Hurwitz, Jr. and R. Clark Jones, J. Opt Soc. Am. 31, 493 (1941).
  6. Max Born, Optik (Verlagsbuchhandlung Julius Springer, Berlin, 1933), p. 23.
  7. O. Schönrock, Handbuch der Physik 19, 749 (1928).
  8. F. Lippich, Wien. Ber. 91, 1059 (1885).
  9. G. Szivessy, Handbuch der Physik 19, 955 (footnote 2) (1928); T. M. Lowry, Opt. Rotatory Power (Longmans, Green and Company, London, 1935), p. 189.
  10. See reference 7, p. 750.
  11. See reference 9, p. 932.
  12. E. Bcrtrand, Bull. Soc. Mineral. 1, 26 (1878).
  13. S. Nakamura. Centralblatt f. Min., 267 (1905).
  14. Such rotator was proposed by Hans Mueller at M.I.T. in a private conversation (July 1946).
  15. J. Strong, Rev. Sci. Inst. 6, 243 (1935).
  16. See reference 9, p. 955.
  17. Chauvin, Ann. de Toulouse 3(J), 30 (1889).
  18. L. Chaumont, Ann. de physique (9), 4, 175 (1915).
  19. G. Szivessy and W. Herzog, Zeits. f. Instrumentenk. 58, 229, 345 (1938).
  20. F. Gabler and P. Sokob, Zeits. f. Instrumentenk 58, 301 (1938).
  21. M. Richartz, Zeits. f. Instrumentenkunde 60, 360 (1940).
  22. G. Szivessy and A. Dierkesmann, Ann. d. Physik 11, 909 (1931).
  23. M. Richartz, “Measurement of phase differences of half-shadow plates,” Zeits. f. Instrumentenk. 60, 358 (1940).
  24. See reference 19, p. 345.
  25. See reference 24, p. 229.
  26. See reference 9, p. 955.
  27. M. Richartz, Zeits. f. Instrumentenkunde 61, 148 (1941); J. Opt. Soc. Am. 31, 292 (1941).
  28. See reference 9, p. 956.
  29. A. Q. Tool, Phys. Rev. 31, 1 (1910).
  30. T. M. Lowry, Optical Rotatory Power (Longmans, Green and Company, London, 1935), p. 186.
  31. L. B. Tuckerman, Univ. Stud, of the University of Nebraska, 9, 194 (1909).
  32. C. A. Skinner, J. Opt. Soc. Am. 10, 491 (1925).
  33. G. Szivessy, Zeits. f. Instrumentenk. 47, 148 (1925).
  34. C. Bergholm, Physik. Zeits. 21, 137 (1920).
  35. Reference 9, p. 961.
  36. G. Szivessy, Zeits. f. Instrumentenk. 46, 454 (1926).
  37. W. Voigt, Physik. Zeits. 2, 303 (1901); see reference 9, p. 963.
  38. R. S. Minor, Ann. d. Physik 10, 581 (1903).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited