OSA's Digital Library

Journal of the Optical Society of America

Journal of the Optical Society of America

  • Vol. 52, Iss. 3 — Mar. 1, 1962
  • pp: 313–322

Counting Metameric Object Colors

W. S. STILES and G. W. WYSZECKI  »View Author Affiliations


JOSA, Vol. 52, Issue 3, pp. 313-322 (1962)
http://dx.doi.org/10.1364/JOSA.52.000313


View Full Text Article

Acrobat PDF (1624 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The characteristics of the whole set of tristimulus values for “all” object surfaces can be studied by applying statistical methods. This leads to the determination (a) of the relative numbers of object colors that are metameric with respect to any fixed reference color, and (b) of the distribution of the tristimulus values in one trichromatic system of all object surfaces that are metameric in another trichromatic system. Subject to certain restrictions, Gaussian distributions are found to apply. The conclusions bear on important colorimetric problems such as color-rendering and degree of metamerism.

Citation
W. S. STILES and G. W. WYSZECKI, "Counting Metameric Object Colors," J. Opt. Soc. Am. 52, 313-322 (1962)
http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-52-3-313


Sort:  Author  |  Journal  |  Reset

References

  1. International Commission on Illumination: Proceedings 8th Session, Cambridge, 1931 (Cambridge University Press, London, England, 1932), p. 19.
  2. E. Schrödinger, Ann. Physik 62, 603 (1920).
  3. S. Rösch, Fortschr. Mineral., Krist., Petrog. 13, 143 (1929).
  4. D. L. MacAdam, J. Opt. Soc. Am. 25, 249 (1935).
  5. This multiple integral with simple limits is valid provided it is understood that F(x1,x2xM) is defined to be zero if any xi lies outside the interval 0≤xi≤1.
  6. See for example:H. Cramér, Mathematical Methods of Statistics. (Princeton University Press, Princeton, New Jersey, 1946).
  7. H. Cramér, Random variables and probability distributions. Cambridge Tracts in Mathematics and Mathematical Physics No. 36. (Cambridge University Press, London, 1937).
  8. See, for example: S. Goldman, Information Theory (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1953).
  9. G. Wyszecki, J. Opt. Soc. Am. 48, 451 (1958).
  10. G. Wyszecki, CIE Proc. Brussels 1959, Vol. A, 146 (1960).
  11. G. Wyszecki, J. Opt. Soc. Am. 49, 811 (1959).
  12. R. Courant and D. Hilbert, Methoden der Mathematischen Physik I (Verlag Julius Springer, Berlin, 1931), p. 19.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited